codeBert Base
This is a sentence-transformers model finetuned from microsoft/codebert-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: microsoft/codebert-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'RobertaModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("killdollar/codebert-embed-base-dense-retriever")
sentences = [
'How does __init__ work in Python?',
'def __init__(\n self,\n encoding_name: str = "gpt2",\n model_name: str | None = None,\n allowed_special: Literal["all"] | AbstractSet[str] = set(),\n disallowed_special: Literal["all"] | Collection[str] = "all",\n **kwargs: Any,\n ) -> None:\n """Create a new `TextSplitter`.\n\n Args:\n encoding_name: The name of the tiktoken encoding to use.\n model_name: The name of the model to use. If provided, this will\n override the `encoding_name`.\n allowed_special: Special tokens that are allowed during encoding.\n disallowed_special: Special tokens that are disallowed during encoding.\n\n Raises:\n ImportError: If the tiktoken package is not installed.\n """\n super().__init__(**kwargs)\n if not _HAS_TIKTOKEN:\n msg = (\n "Could not import tiktoken python package. "\n "This is needed in order to for TokenTextSplitter. "\n "Please install it with `pip install tiktoken`."\n )\n raise ImportError(msg)\n\n if model_name is not None:\n enc = tiktoken.encoding_for_model(model_name)\n else:\n enc = tiktoken.get_encoding(encoding_name)\n self._tokenizer = enc\n self._allowed_special = allowed_special\n self._disallowed_special = disallowed_special',
'def test_fixed_message_response_when_docs_found() -> None:\n fixed_resp = "I don\'t know"\n answer = "I know the answer!"\n llm = FakeListLLM(responses=[answer])\n retriever = SequentialRetriever(\n sequential_responses=[[Document(page_content=answer)]],\n )\n memory = ConversationBufferMemory(\n k=1,\n output_key="answer",\n memory_key="chat_history",\n return_messages=True,\n )\n qa_chain = ConversationalRetrievalChain.from_llm(\n llm=llm,\n memory=memory,\n retriever=retriever,\n return_source_documents=True,\n rephrase_question=False,\n response_if_no_docs_found=fixed_resp,\n verbose=True,\n )\n got = qa_chain("What is the answer?")\n assert got["chat_history"][1].content == answer\n assert got["answer"] == answer',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities)
Evaluation
Metrics
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.83 |
| cosine_accuracy@3 |
0.85 |
| cosine_accuracy@5 |
0.86 |
| cosine_accuracy@10 |
0.94 |
| cosine_precision@1 |
0.83 |
| cosine_precision@3 |
0.83 |
| cosine_precision@5 |
0.83 |
| cosine_precision@10 |
0.453 |
| cosine_recall@1 |
0.166 |
| cosine_recall@3 |
0.498 |
| cosine_recall@5 |
0.83 |
| cosine_recall@10 |
0.906 |
| cosine_ndcg@10 |
0.8712 |
| cosine_mrr@10 |
0.8533 |
| cosine_map@100 |
0.8616 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.85 |
| cosine_accuracy@3 |
0.86 |
| cosine_accuracy@5 |
0.87 |
| cosine_accuracy@10 |
0.95 |
| cosine_precision@1 |
0.85 |
| cosine_precision@3 |
0.84 |
| cosine_precision@5 |
0.842 |
| cosine_precision@10 |
0.453 |
| cosine_recall@1 |
0.17 |
| cosine_recall@3 |
0.504 |
| cosine_recall@5 |
0.842 |
| cosine_recall@10 |
0.906 |
| cosine_ndcg@10 |
0.8776 |
| cosine_mrr@10 |
0.8699 |
| cosine_map@100 |
0.8693 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.86 |
| cosine_accuracy@3 |
0.89 |
| cosine_accuracy@5 |
0.9 |
| cosine_accuracy@10 |
0.93 |
| cosine_precision@1 |
0.86 |
| cosine_precision@3 |
0.85 |
| cosine_precision@5 |
0.85 |
| cosine_precision@10 |
0.45 |
| cosine_recall@1 |
0.172 |
| cosine_recall@3 |
0.51 |
| cosine_recall@5 |
0.85 |
| cosine_recall@10 |
0.9 |
| cosine_ndcg@10 |
0.879 |
| cosine_mrr@10 |
0.8806 |
| cosine_map@100 |
0.8727 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.84 |
| cosine_accuracy@3 |
0.87 |
| cosine_accuracy@5 |
0.88 |
| cosine_accuracy@10 |
0.93 |
| cosine_precision@1 |
0.84 |
| cosine_precision@3 |
0.8367 |
| cosine_precision@5 |
0.842 |
| cosine_precision@10 |
0.455 |
| cosine_recall@1 |
0.168 |
| cosine_recall@3 |
0.502 |
| cosine_recall@5 |
0.842 |
| cosine_recall@10 |
0.91 |
| cosine_ndcg@10 |
0.8777 |
| cosine_mrr@10 |
0.863 |
| cosine_map@100 |
0.8662 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.78 |
| cosine_accuracy@3 |
0.81 |
| cosine_accuracy@5 |
0.81 |
| cosine_accuracy@10 |
0.93 |
| cosine_precision@1 |
0.78 |
| cosine_precision@3 |
0.7867 |
| cosine_precision@5 |
0.786 |
| cosine_precision@10 |
0.448 |
| cosine_recall@1 |
0.156 |
| cosine_recall@3 |
0.472 |
| cosine_recall@5 |
0.786 |
| cosine_recall@10 |
0.896 |
| cosine_ndcg@10 |
0.8445 |
| cosine_mrr@10 |
0.8121 |
| cosine_map@100 |
0.8308 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 900 training samples
- Columns:
anchor and positive
- Approximate statistics based on the first 900 samples:
|
anchor |
positive |
| type |
string |
string |
| details |
- min: 6 tokens
- mean: 13.15 tokens
- max: 42 tokens
|
- min: 25 tokens
- mean: 239.87 tokens
- max: 512 tokens
|
- Samples:
| anchor |
positive |
Explain the test_qdrant_similarity_search_with_relevance_scores logic |
def test_qdrant_similarity_search_with_relevance_scores( batch_size: int, content_payload_key: str, metadata_payload_key: str, vector_name: str | None, ) -> None: """Test end to end construction and search.""" texts = ["foo", "bar", "baz"] docsearch = Qdrant.from_texts( texts, ConsistentFakeEmbeddings(), location=":memory:", content_payload_key=content_payload_key, metadata_payload_key=metadata_payload_key, batch_size=batch_size, vector_name=vector_name, ) output = docsearch.similarity_search_with_relevance_scores("foo", k=3)
assert all( (score <= 1 or np.isclose(score, 1)) and score >= 0 for _, score in output ) |
How to implement LangChainPendingDeprecationWarning? |
class LangChainPendingDeprecationWarning(PendingDeprecationWarning): """A class for issuing deprecation warnings for LangChain users.""" |
Example usage of random_name |
def random_name() -> str: """Generate a random name.""" adjective = random.choice(adjectives) # noqa: S311 noun = random.choice(nouns) # noqa: S311 number = random.randint(1, 100) # noqa: S311 return f"{adjective}-{noun}-{number}" |
- Loss:
MatryoshkaLoss with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: epoch
per_device_train_batch_size: 4
per_device_eval_batch_size: 4
gradient_accumulation_steps: 16
learning_rate: 2e-05
num_train_epochs: 4
lr_scheduler_type: cosine
warmup_ratio: 0.1
fp16: True
load_best_model_at_end: True
optim: adamw_torch
batch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: epoch
prediction_loss_only: True
per_device_train_batch_size: 4
per_device_eval_batch_size: 4
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 16
eval_accumulation_steps: None
torch_empty_cache_steps: None
learning_rate: 2e-05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 4
max_steps: -1
lr_scheduler_type: cosine
lr_scheduler_kwargs: {}
warmup_ratio: 0.1
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
bf16: False
fp16: True
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: None
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: False
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: True
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
parallelism_config: None
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
project: huggingface
trackio_space_id: trackio
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: None
hub_model_id: None
hub_strategy: every_save
hub_private_repo: None
hub_always_push: False
hub_revision: None
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
include_for_metrics: []
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
include_tokens_per_second: False
include_num_input_tokens_seen: no
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
eval_on_start: False
use_liger_kernel: False
liger_kernel_config: None
eval_use_gather_object: False
average_tokens_across_devices: True
prompts: None
batch_sampler: no_duplicates
multi_dataset_batch_sampler: proportional
router_mapping: {}
learning_rate_mapping: {}
Training Logs
| Epoch |
Step |
Training Loss |
dim_768_cosine_ndcg@10 |
dim_512_cosine_ndcg@10 |
dim_256_cosine_ndcg@10 |
dim_128_cosine_ndcg@10 |
dim_64_cosine_ndcg@10 |
| 0.7111 |
10 |
6.8447 |
- |
- |
- |
- |
- |
| 1.0 |
15 |
- |
0.1025 |
0.0367 |
0.0548 |
0.0502 |
0.1185 |
| 0.7111 |
10 |
4.8545 |
- |
- |
- |
- |
- |
| 1.0 |
15 |
- |
0.2250 |
0.3047 |
0.2895 |
0.2892 |
0.3178 |
| 0.7111 |
10 |
1.9011 |
- |
- |
- |
- |
- |
| 1.0 |
15 |
- |
0.6530 |
0.6393 |
0.6269 |
0.6631 |
0.6658 |
| 1.3556 |
20 |
0.6349 |
- |
- |
- |
- |
- |
| 2.0 |
30 |
0.1887 |
0.8480 |
0.8643 |
0.8641 |
0.8532 |
0.7974 |
| 2.7111 |
40 |
0.0959 |
- |
- |
- |
- |
- |
| 3.0 |
45 |
- |
0.8688 |
0.8774 |
0.8754 |
0.8725 |
0.8457 |
| 3.3556 |
50 |
0.0359 |
- |
- |
- |
- |
- |
| 4.0 |
60 |
0.0515 |
0.8712 |
0.8776 |
0.879 |
0.8777 |
0.8445 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.12.12
- Sentence Transformers: 5.2.0
- Transformers: 4.57.3
- PyTorch: 2.9.0+cu126
- Accelerate: 1.12.0
- Datasets: 4.0.0
- Tokenizers: 0.22.2
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}