codeBert Base

This is a sentence-transformers model finetuned from microsoft/codebert-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: microsoft/codebert-base
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'RobertaModel'})
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("killdollar/codebert-embed-base-dense-retriever")
# Run inference
sentences = [
    'How does __init__ work in Python?',
    'def __init__(\n        self,\n        encoding_name: str = "gpt2",\n        model_name: str | None = None,\n        allowed_special: Literal["all"] | AbstractSet[str] = set(),\n        disallowed_special: Literal["all"] | Collection[str] = "all",\n        **kwargs: Any,\n    ) -> None:\n        """Create a new `TextSplitter`.\n\n        Args:\n            encoding_name: The name of the tiktoken encoding to use.\n            model_name: The name of the model to use. If provided, this will\n                override the `encoding_name`.\n            allowed_special: Special tokens that are allowed during encoding.\n            disallowed_special: Special tokens that are disallowed during encoding.\n\n        Raises:\n            ImportError: If the tiktoken package is not installed.\n        """\n        super().__init__(**kwargs)\n        if not _HAS_TIKTOKEN:\n            msg = (\n                "Could not import tiktoken python package. "\n                "This is needed in order to for TokenTextSplitter. "\n                "Please install it with `pip install tiktoken`."\n            )\n            raise ImportError(msg)\n\n        if model_name is not None:\n            enc = tiktoken.encoding_for_model(model_name)\n        else:\n            enc = tiktoken.get_encoding(encoding_name)\n        self._tokenizer = enc\n        self._allowed_special = allowed_special\n        self._disallowed_special = disallowed_special',
    'def test_fixed_message_response_when_docs_found() -> None:\n    fixed_resp = "I don\'t know"\n    answer = "I know the answer!"\n    llm = FakeListLLM(responses=[answer])\n    retriever = SequentialRetriever(\n        sequential_responses=[[Document(page_content=answer)]],\n    )\n    memory = ConversationBufferMemory(\n        k=1,\n        output_key="answer",\n        memory_key="chat_history",\n        return_messages=True,\n    )\n    qa_chain = ConversationalRetrievalChain.from_llm(\n        llm=llm,\n        memory=memory,\n        retriever=retriever,\n        return_source_documents=True,\n        rephrase_question=False,\n        response_if_no_docs_found=fixed_resp,\n        verbose=True,\n    )\n    got = qa_chain("What is the answer?")\n    assert got["chat_history"][1].content == answer\n    assert got["answer"] == answer',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.7336, 0.0979],
#         [0.7336, 1.0000, 0.1742],
#         [0.0979, 0.1742, 1.0000]])

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.83
cosine_accuracy@3 0.85
cosine_accuracy@5 0.86
cosine_accuracy@10 0.94
cosine_precision@1 0.83
cosine_precision@3 0.83
cosine_precision@5 0.83
cosine_precision@10 0.453
cosine_recall@1 0.166
cosine_recall@3 0.498
cosine_recall@5 0.83
cosine_recall@10 0.906
cosine_ndcg@10 0.8712
cosine_mrr@10 0.8533
cosine_map@100 0.8616

Information Retrieval

Metric Value
cosine_accuracy@1 0.85
cosine_accuracy@3 0.86
cosine_accuracy@5 0.87
cosine_accuracy@10 0.95
cosine_precision@1 0.85
cosine_precision@3 0.84
cosine_precision@5 0.842
cosine_precision@10 0.453
cosine_recall@1 0.17
cosine_recall@3 0.504
cosine_recall@5 0.842
cosine_recall@10 0.906
cosine_ndcg@10 0.8776
cosine_mrr@10 0.8699
cosine_map@100 0.8693

Information Retrieval

Metric Value
cosine_accuracy@1 0.86
cosine_accuracy@3 0.89
cosine_accuracy@5 0.9
cosine_accuracy@10 0.93
cosine_precision@1 0.86
cosine_precision@3 0.85
cosine_precision@5 0.85
cosine_precision@10 0.45
cosine_recall@1 0.172
cosine_recall@3 0.51
cosine_recall@5 0.85
cosine_recall@10 0.9
cosine_ndcg@10 0.879
cosine_mrr@10 0.8806
cosine_map@100 0.8727

Information Retrieval

Metric Value
cosine_accuracy@1 0.84
cosine_accuracy@3 0.87
cosine_accuracy@5 0.88
cosine_accuracy@10 0.93
cosine_precision@1 0.84
cosine_precision@3 0.8367
cosine_precision@5 0.842
cosine_precision@10 0.455
cosine_recall@1 0.168
cosine_recall@3 0.502
cosine_recall@5 0.842
cosine_recall@10 0.91
cosine_ndcg@10 0.8777
cosine_mrr@10 0.863
cosine_map@100 0.8662

Information Retrieval

Metric Value
cosine_accuracy@1 0.78
cosine_accuracy@3 0.81
cosine_accuracy@5 0.81
cosine_accuracy@10 0.93
cosine_precision@1 0.78
cosine_precision@3 0.7867
cosine_precision@5 0.786
cosine_precision@10 0.448
cosine_recall@1 0.156
cosine_recall@3 0.472
cosine_recall@5 0.786
cosine_recall@10 0.896
cosine_ndcg@10 0.8445
cosine_mrr@10 0.8121
cosine_map@100 0.8308

Training Details

Training Dataset

Unnamed Dataset

  • Size: 900 training samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 900 samples:
    anchor positive
    type string string
    details
    • min: 6 tokens
    • mean: 13.15 tokens
    • max: 42 tokens
    • min: 25 tokens
    • mean: 239.87 tokens
    • max: 512 tokens
  • Samples:
    anchor positive
    Explain the test_qdrant_similarity_search_with_relevance_scores logic def test_qdrant_similarity_search_with_relevance_scores(
    batch_size: int,
    content_payload_key: str,
    metadata_payload_key: str,
    vector_name: str | None,
    ) -> None:
    """Test end to end construction and search."""
    texts = ["foo", "bar", "baz"]
    docsearch = Qdrant.from_texts(
    texts,
    ConsistentFakeEmbeddings(),
    location=":memory:",
    content_payload_key=content_payload_key,
    metadata_payload_key=metadata_payload_key,
    batch_size=batch_size,
    vector_name=vector_name,
    )
    output = docsearch.similarity_search_with_relevance_scores("foo", k=3)

    assert all(
    (score <= 1 or np.isclose(score, 1)) and score >= 0 for _, score in output
    )
    How to implement LangChainPendingDeprecationWarning? class LangChainPendingDeprecationWarning(PendingDeprecationWarning):
    """A class for issuing deprecation warnings for LangChain users."""
    Example usage of random_name def random_name() -> str:
    """Generate a random name."""
    adjective = random.choice(adjectives) # noqa: S311
    noun = random.choice(nouns) # noqa: S311
    number = random.randint(1, 100) # noqa: S311
    return f"{adjective}-{noun}-{number}"
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 4
  • per_device_eval_batch_size: 4
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 4
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • fp16: True
  • load_best_model_at_end: True
  • optim: adamw_torch
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 4
  • per_device_eval_batch_size: 4
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • parallelism_config: None
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • project: huggingface
  • trackio_space_id: trackio
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • hub_revision: None
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: no
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • liger_kernel_config: None
  • eval_use_gather_object: False
  • average_tokens_across_devices: True
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Epoch Step Training Loss dim_768_cosine_ndcg@10 dim_512_cosine_ndcg@10 dim_256_cosine_ndcg@10 dim_128_cosine_ndcg@10 dim_64_cosine_ndcg@10
0.7111 10 6.8447 - - - - -
1.0 15 - 0.1025 0.0367 0.0548 0.0502 0.1185
0.7111 10 4.8545 - - - - -
1.0 15 - 0.2250 0.3047 0.2895 0.2892 0.3178
0.7111 10 1.9011 - - - - -
1.0 15 - 0.6530 0.6393 0.6269 0.6631 0.6658
1.3556 20 0.6349 - - - - -
2.0 30 0.1887 0.8480 0.8643 0.8641 0.8532 0.7974
2.7111 40 0.0959 - - - - -
3.0 45 - 0.8688 0.8774 0.8754 0.8725 0.8457
3.3556 50 0.0359 - - - - -
4.0 60 0.0515 0.8712 0.8776 0.879 0.8777 0.8445
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.12.12
  • Sentence Transformers: 5.2.0
  • Transformers: 4.57.3
  • PyTorch: 2.9.0+cu126
  • Accelerate: 1.12.0
  • Datasets: 4.0.0
  • Tokenizers: 0.22.2

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
14
Safetensors
Model size
0.1B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for shubharuidas/codebert-embed-base-dense-retriever

Finetuned
(125)
this model
Finetunes
1 model

Papers for shubharuidas/codebert-embed-base-dense-retriever

Evaluation results