File size: 35,569 Bytes
eb8e393
 
 
 
 
 
 
 
 
 
30a0cde
 
eb8e393
 
 
30a0cde
eb8e393
 
 
 
 
 
e4fdf48
eb8e393
30a0cde
e4fdf48
 
 
 
 
 
 
 
30a0cde
eb8e393
 
 
30a0cde
eb8e393
 
 
 
 
 
 
 
 
 
e4fdf48
 
 
 
eb8e393
 
 
 
 
 
 
 
e4fdf48
 
 
 
 
eb8e393
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4fdf48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb8e393
 
 
 
 
 
 
 
 
 
 
 
 
e4fdf48
eb8e393
 
 
 
 
 
 
 
 
 
e4fdf48
 
 
 
 
 
 
 
 
eb8e393
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5731dbc
 
 
 
 
eb8e393
 
 
 
 
 
 
 
5731dbc
 
eb8e393
 
 
 
 
5731dbc
eb8e393
 
5731dbc
 
 
eb8e393
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1893c89
 
 
 
 
 
 
eb8e393
 
 
 
 
 
 
 
 
 
 
30a0cde
 
eb8e393
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30a0cde
 
e4fdf48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7c91d9
eb8e393
 
 
e7c91d9
eb8e393
1893c89
 
eb8e393
 
 
 
 
 
 
 
e7c91d9
eb8e393
e7c91d9
eb8e393
 
 
 
e7c91d9
eb8e393
 
e7c91d9
 
 
 
 
 
 
 
 
e4fdf48
e7c91d9
 
 
 
e4fdf48
eb8e393
1893c89
eb8e393
 
 
 
 
e7c91d9
 
eb8e393
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1893c89
eb8e393
 
 
 
 
e4fdf48
 
 
 
eb8e393
1893c89
 
 
 
 
30a0cde
 
eb8e393
 
 
30a0cde
eb8e393
 
 
e7c91d9
30a0cde
 
e7c91d9
 
 
eb8e393
e7c91d9
 
eb8e393
e7c91d9
eb8e393
 
30a0cde
 
eb8e393
 
 
30a0cde
e7c91d9
eb8e393
 
 
 
 
 
 
e7c91d9
eb8e393
 
e7c91d9
 
 
 
 
eb8e393
 
 
 
e7c91d9
eb8e393
 
 
 
e7c91d9
eb8e393
 
 
 
 
 
 
e7c91d9
eb8e393
 
 
 
e7c91d9
eb8e393
 
 
 
 
 
 
 
 
 
 
e7c91d9
eb8e393
e7c91d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb8e393
e7c91d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb8e393
 
 
 
30a0cde
 
eb8e393
 
 
 
 
 
 
 
 
 
 
 
 
e7c91d9
 
 
 
 
e4fdf48
e7c91d9
eb8e393
 
 
 
1893c89
eb8e393
 
1893c89
eb8e393
 
 
 
 
 
1893c89
eb8e393
 
 
 
 
e7c91d9
eb8e393
 
 
 
 
 
 
e7c91d9
 
 
 
 
6e88f17
 
 
e7c91d9
 
 
 
 
 
 
 
6e88f17
e7c91d9
 
 
eb8e393
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1893c89
eb8e393
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7c91d9
 
 
 
 
 
 
 
 
 
79e7eba
e7c91d9
eb8e393
 
 
 
 
 
 
 
 
 
 
1893c89
e7c91d9
 
1893c89
 
eb8e393
 
 
e7c91d9
eb8e393
 
e7c91d9
 
 
 
 
 
eb8e393
 
 
 
 
 
 
 
 
 
e7c91d9
eb8e393
 
 
 
 
 
1893c89
e7c91d9
eb8e393
 
 
 
 
 
e7c91d9
 
 
e4fdf48
eb8e393
 
e7c91d9
 
 
 
eb8e393
 
 
 
 
 
e7c91d9
 
 
 
eb8e393
 
e7c91d9
 
 
eb8e393
 
 
 
 
 
e7c91d9
 
eb8e393
 
e7c91d9
eb8e393
 
 
 
 
1893c89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7c91d9
 
 
 
 
 
 
 
 
 
 
 
 
 
1893c89
 
 
 
 
 
e7c91d9
 
 
 
 
5efbc3a
e7c91d9
eb8e393
 
 
e7c91d9
 
eb8e393
 
e7c91d9
eb8e393
 
 
30a0cde
eb8e393
 
 
 
30a0cde
 
eb8e393
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
"""
Lyra/Lune Flow-Matching Inference Space
Author: AbstractPhil
License: MIT

SD1.5-based flow matching with geometric crystalline architectures.
"""

import os
import torch
import gradio as gr
import numpy as np
from PIL import Image
from typing import Optional, Dict
import spaces

from diffusers import (
    UNet2DConditionModel,
    AutoencoderKL,
    DPMSolverMultistepScheduler,
    EulerDiscreteScheduler
)
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5Tokenizer
from huggingface_hub import hf_hub_download

# Import Lyra VAE from geovocab2
try:
    from geovocab2.train.model.vae.vae_lyra import MultiModalVAE, MultiModalVAEConfig
    LYRA_AVAILABLE = True
except ImportError:
    print("⚠️ Lyra VAE not available - install geovocab2")
    LYRA_AVAILABLE = False


# ============================================================================
# MODEL LOADING
# ============================================================================

class FlowMatchingPipeline:
    """Custom pipeline for flow-matching inference."""
    
    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        tokenizer: CLIPTokenizer,
        unet: UNet2DConditionModel,
        scheduler,
        device: str = "cuda",
        t5_encoder: Optional[T5EncoderModel] = None,
        t5_tokenizer: Optional[T5Tokenizer] = None,
        lyra_model: Optional[any] = None
    ):
        self.vae = vae
        self.text_encoder = text_encoder
        self.tokenizer = tokenizer
        self.unet = unet
        self.scheduler = scheduler
        self.device = device
        
        # Lyra-specific components
        self.t5_encoder = t5_encoder
        self.t5_tokenizer = t5_tokenizer
        self.lyra_model = lyra_model
        
        # VAE scaling factor
        self.vae_scale_factor = 0.18215
        
    def encode_prompt(self, prompt: str, negative_prompt: str = ""):
        """Encode text prompts to embeddings."""
        # Positive prompt
        text_inputs = self.tokenizer(
            prompt,
            padding="max_length",
            max_length=self.tokenizer.model_max_length,
            truncation=True,
            return_tensors="pt",
        )
        text_input_ids = text_inputs.input_ids.to(self.device)
        
        with torch.no_grad():
            prompt_embeds = self.text_encoder(text_input_ids)[0]
        
        # Negative prompt
        if negative_prompt:
            uncond_inputs = self.tokenizer(
                negative_prompt,
                padding="max_length",
                max_length=self.tokenizer.model_max_length,
                truncation=True,
                return_tensors="pt",
            )
            uncond_input_ids = uncond_inputs.input_ids.to(self.device)
            
            with torch.no_grad():
                negative_prompt_embeds = self.text_encoder(uncond_input_ids)[0]
        else:
            negative_prompt_embeds = torch.zeros_like(prompt_embeds)
        
        return prompt_embeds, negative_prompt_embeds
    
    def encode_prompt_lyra(self, prompt: str, negative_prompt: str = ""):
        """Encode text prompts using Lyra VAE (CLIP + T5 fusion)."""
        if self.lyra_model is None or self.t5_encoder is None:
            raise ValueError("Lyra VAE components not initialized")
        
        # Get CLIP embeddings
        text_inputs = self.tokenizer(
            prompt,
            padding="max_length",
            max_length=self.tokenizer.model_max_length,
            truncation=True,
            return_tensors="pt",
        )
        text_input_ids = text_inputs.input_ids.to(self.device)
        
        with torch.no_grad():
            clip_embeds = self.text_encoder(text_input_ids)[0]
        
        # Get T5 embeddings
        t5_inputs = self.t5_tokenizer(
            prompt,
            max_length=77,
            padding='max_length',
            truncation=True,
            return_tensors='pt'
        ).to(self.device)
        
        with torch.no_grad():
            t5_embeds = self.t5_encoder(**t5_inputs).last_hidden_state
        
        # Fuse through Lyra VAE
        modality_inputs = {
            'clip': clip_embeds,
            't5': t5_embeds
        }
        
        with torch.no_grad():
            reconstructions, mu, logvar = self.lyra_model(
                modality_inputs, 
                target_modalities=['clip']
            )
            prompt_embeds = reconstructions['clip']
        
        # Process negative prompt
        if negative_prompt:
            uncond_inputs = self.tokenizer(
                negative_prompt,
                padding="max_length",
                max_length=self.tokenizer.model_max_length,
                truncation=True,
                return_tensors="pt",
            )
            uncond_input_ids = uncond_inputs.input_ids.to(self.device)
            
            with torch.no_grad():
                clip_embeds_uncond = self.text_encoder(uncond_input_ids)[0]
            
            t5_inputs_uncond = self.t5_tokenizer(
                negative_prompt,
                max_length=77,
                padding='max_length',
                truncation=True,
                return_tensors='pt'
            ).to(self.device)
            
            with torch.no_grad():
                t5_embeds_uncond = self.t5_encoder(**t5_inputs_uncond).last_hidden_state
            
            modality_inputs_uncond = {
                'clip': clip_embeds_uncond,
                't5': t5_embeds_uncond
            }
            
            with torch.no_grad():
                reconstructions_uncond, _, _ = self.lyra_model(
                    modality_inputs_uncond,
                    target_modalities=['clip']
                )
                negative_prompt_embeds = reconstructions_uncond['clip']
        else:
            negative_prompt_embeds = torch.zeros_like(prompt_embeds)
        
        return prompt_embeds, negative_prompt_embeds
    
    @torch.no_grad()
    def __call__(
        self,
        prompt: str,
        negative_prompt: str = "",
        height: int = 512,
        width: int = 512,
        num_inference_steps: int = 20,
        guidance_scale: float = 7.5,
        shift: float = 2.5,
        use_flow_matching: bool = True,
        prediction_type: str = "epsilon",
        seed: Optional[int] = None,
        use_lyra: bool = False,
        progress_callback=None
    ):
        """Generate image using flow matching or standard diffusion."""
        
        # Set seed
        if seed is not None:
            generator = torch.Generator(device=self.device).manual_seed(seed)
        else:
            generator = None
        
        # Encode prompts - use Lyra if specified
        if use_lyra and self.lyra_model is not None:
            prompt_embeds, negative_prompt_embeds = self.encode_prompt_lyra(
                prompt, negative_prompt
            )
        else:
            prompt_embeds, negative_prompt_embeds = self.encode_prompt(
                prompt, negative_prompt
            )
        
        # Prepare latents
        latent_channels = 4
        latent_height = height // 8
        latent_width = width // 8
        
        latents = torch.randn(
            (1, latent_channels, latent_height, latent_width),
            generator=generator,
            device=self.device,
            dtype=torch.float32
        )
        
        # Set timesteps
        self.scheduler.set_timesteps(num_inference_steps, device=self.device)
        timesteps = self.scheduler.timesteps
        
        # Scale initial latents by scheduler's init_noise_sigma for standard diffusion
        # Flow matching uses unscaled latents and custom ODE integration
        if not use_flow_matching:
            latents = latents * self.scheduler.init_noise_sigma
        
        # Denoising loop
        for i, t in enumerate(timesteps):
            if progress_callback:
                progress_callback(i, num_inference_steps, f"Step {i+1}/{num_inference_steps}")
            
            # Expand latents for classifier-free guidance
            latent_model_input = torch.cat([latents] * 2) if guidance_scale > 1.0 else latents
            
            # For standard diffusion, let scheduler handle scaling
            # For flow matching, apply custom shift-based scaling
            if use_flow_matching and shift > 0:
                # Compute sigma from timestep with shift
                sigma = t.float() / 1000.0
                sigma_shifted = (shift * sigma) / (1 + (shift - 1) * sigma)
                
                # Scale latent input for flow matching
                scaling = torch.sqrt(1 + sigma_shifted ** 2)
                latent_model_input = latent_model_input / scaling
            else:
                # For standard diffusion, scale by scheduler
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
            
            # Prepare timestep
            timestep = t.expand(latent_model_input.shape[0])
            
            # Predict noise/velocity
            text_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) if guidance_scale > 1.0 else prompt_embeds
            
            noise_pred = self.unet(
                latent_model_input,
                timestep,
                encoder_hidden_states=text_embeds,
                return_dict=False
            )[0]
            
            # Classifier-free guidance
            if guidance_scale > 1.0:
                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
            
            # Flow matching step
            if use_flow_matching:
                # Manual flow matching update
                sigma = t.float() / 1000.0
                sigma_shifted = (shift * sigma) / (1 + (shift - 1) * sigma)
                
                if prediction_type == "v_prediction":
                    # Convert v-prediction to epsilon
                    v_pred = noise_pred
                    alpha_t = torch.sqrt(1 - sigma_shifted ** 2)
                    sigma_t = sigma_shifted
                    noise_pred = alpha_t * v_pred + sigma_t * latents
                
                # Compute next latent
                dt = -1.0 / num_inference_steps
                latents = latents + dt * noise_pred
            else:
                # Standard scheduler step
                latents = self.scheduler.step(
                    noise_pred, t, latents, return_dict=False
                )[0]
        
        # Decode latents with model-specific scaling
        latents = latents / self.vae_scale_factor
        
        # Lune-specific scaling: multiply by 5.52 for Lune's latent space offset
        # This must be applied ONLY for Lune model, not SD1.5 Base
        if hasattr(self, 'is_lune_model') and self.is_lune_model:
            latents = latents * 5.52
        
        with torch.no_grad():
            image = self.vae.decode(latents).sample
        
        # Convert to PIL
        image = (image / 2 + 0.5).clamp(0, 1)
        image = image.cpu().permute(0, 2, 3, 1).float().numpy()
        image = (image * 255).round().astype("uint8")
        image = Image.fromarray(image[0])
        
        return image


def load_lune_checkpoint(repo_id: str, filename: str, device: str = "cuda"):
    """Load Lune checkpoint from .pt file."""
    print(f"πŸ“₯ Downloading checkpoint: {repo_id}/{filename}")
    
    checkpoint_path = hf_hub_download(
        repo_id=repo_id,
        filename=filename,
        repo_type="model"
    )
    
    print(f"βœ“ Downloaded to: {checkpoint_path}")
    print(f"πŸ“¦ Loading checkpoint...")
    
    checkpoint = torch.load(checkpoint_path, map_location="cpu")
    
    # Initialize UNet with SD1.5 config
    print(f"πŸ—οΈ Initializing SD1.5 UNet...")
    unet = UNet2DConditionModel.from_pretrained(
        "runwayml/stable-diffusion-v1-5",
        subfolder="unet",
        torch_dtype=torch.float32
    )
    
    # Load student weights
    student_state_dict = checkpoint["student"]
    
    # Strip "unet." prefix if present
    cleaned_dict = {}
    for key, value in student_state_dict.items():
        if key.startswith("unet."):
            cleaned_dict[key[5:]] = value
        else:
            cleaned_dict[key] = value
    
    # Load weights
    unet.load_state_dict(cleaned_dict, strict=False)
    
    step = checkpoint.get("gstep", "unknown")
    print(f"βœ… Loaded checkpoint from step {step}")
    
    return unet.to(device)


def load_lyra_vae(repo_id: str = "AbstractPhil/vae-lyra", device: str = "cuda"):
    """Load Lyra VAE from HuggingFace."""
    if not LYRA_AVAILABLE:
        print("⚠️ Lyra VAE not available - geovocab2 not installed")
        return None
    
    print(f"🎡 Loading Lyra VAE from {repo_id}...")
    
    try:
        # Download checkpoint
        checkpoint_path = hf_hub_download(
            repo_id=repo_id,
            filename="best_model.pt",
            repo_type="model"
        )
        
        print(f"βœ“ Downloaded checkpoint: {checkpoint_path}")
        
        # Load checkpoint
        checkpoint = torch.load(checkpoint_path, map_location="cpu")
        
        # Extract config
        if 'config' in checkpoint:
            config_dict = checkpoint['config']
        else:
            # Use default config
            config_dict = {
                'modality_dims': {"clip": 768, "t5": 768},
                'latent_dim': 768,
                'seq_len': 77,
                'encoder_layers': 3,
                'decoder_layers': 3,
                'hidden_dim': 1024,
                'dropout': 0.1,
                'fusion_strategy': 'cantor',
                'fusion_heads': 8,
                'fusion_dropout': 0.1
            }
        
        # Create VAE config
        vae_config = MultiModalVAEConfig(
            modality_dims=config_dict.get('modality_dims', {"clip": 768, "t5": 768}),
            latent_dim=config_dict.get('latent_dim', 768),
            seq_len=config_dict.get('seq_len', 77),
            encoder_layers=config_dict.get('encoder_layers', 3),
            decoder_layers=config_dict.get('decoder_layers', 3),
            hidden_dim=config_dict.get('hidden_dim', 1024),
            dropout=config_dict.get('dropout', 0.1),
            fusion_strategy=config_dict.get('fusion_strategy', 'cantor'),
            fusion_heads=config_dict.get('fusion_heads', 8),
            fusion_dropout=config_dict.get('fusion_dropout', 0.1)
        )
        
        # Create model
        lyra_model = MultiModalVAE(vae_config)
        
        # Load weights
        if 'model_state_dict' in checkpoint:
            lyra_model.load_state_dict(checkpoint['model_state_dict'])
        else:
            lyra_model.load_state_dict(checkpoint)
        
        lyra_model.to(device)
        lyra_model.eval()
        
        # Print info
        print(f"βœ… Lyra VAE loaded successfully")
        if 'global_step' in checkpoint:
            print(f"   Training step: {checkpoint['global_step']:,}")
        if 'best_loss' in checkpoint:
            print(f"   Best loss: {checkpoint['best_loss']:.4f}")
        print(f"   Fusion strategy: {vae_config.fusion_strategy}")
        print(f"   Latent dim: {vae_config.latent_dim}")
        
        return lyra_model
        
    except Exception as e:
        print(f"❌ Failed to load Lyra VAE: {e}")
        return None


def initialize_pipeline(model_choice: str, clip_model: str = "openai/clip-vit-large-patch14", device: str = "cuda"):
    """Initialize the complete pipeline."""
    
    print(f"πŸš€ Initializing {model_choice} pipeline...")
    print(f"   CLIP model: {clip_model}")
    
    is_lune = "Lune" in model_choice
    
    # Load base components
    print("Loading VAE...")
    vae = AutoencoderKL.from_pretrained(
        "runwayml/stable-diffusion-v1-5",
        subfolder="vae",
        torch_dtype=torch.float32
    ).to(device)
    
    print(f"Loading CLIP text encoder: {clip_model}...")
    text_encoder = CLIPTextModel.from_pretrained(
        clip_model,
        torch_dtype=torch.float32
    ).to(device)
    
    tokenizer = CLIPTokenizer.from_pretrained(
        clip_model
    )
    
    # Always load T5 and Lyra for potential use
    print("Loading T5-base encoder...")
    t5_tokenizer = T5Tokenizer.from_pretrained("t5-base")
    t5_encoder = T5EncoderModel.from_pretrained(
        "t5-base",
        torch_dtype=torch.float32
    ).to(device)
    t5_encoder.eval()
    print("βœ“ T5 loaded")
    
    print("Loading Lyra VAE...")
    lyra_model = load_lyra_vae(device=device)
    if lyra_model is None:
        print("⚠️ Lyra VAE not available - fusion disabled")
    
    # Load UNet based on model choice
    if is_lune:
        # Load latest checkpoint from repo
        repo_id = "AbstractPhil/sd15-flow-lune"
        filename = "sd15_flow_lune_e34_s34000.pt"
        unet = load_lune_checkpoint(repo_id, filename, device)
    
    elif model_choice == "SD1.5 Base":
        # Use standard SD1.5 UNet
        print("Loading SD1.5 base UNet...")
        unet = UNet2DConditionModel.from_pretrained(
            "runwayml/stable-diffusion-v1-5",
            subfolder="unet",
            torch_dtype=torch.float32
        ).to(device)
    
    else:
        raise ValueError(f"Unknown model: {model_choice}")
    
    # Initialize scheduler
    scheduler = EulerDiscreteScheduler.from_pretrained(
        "runwayml/stable-diffusion-v1-5",
        subfolder="scheduler"
    )
    
    print("βœ… Pipeline initialized!")
    
    pipeline = FlowMatchingPipeline(
        vae=vae,
        text_encoder=text_encoder,
        tokenizer=tokenizer,
        unet=unet,
        scheduler=scheduler,
        device=device,
        t5_encoder=t5_encoder,
        t5_tokenizer=t5_tokenizer,
        lyra_model=lyra_model
    )
    
    # Set flag for Lune-specific VAE scaling
    pipeline.is_lune_model = is_lune
    
    return pipeline


# ============================================================================
# GLOBAL STATE
# ============================================================================

# Initialize with None, will load on first inference
CURRENT_PIPELINE = None
CURRENT_MODEL = None
CURRENT_CLIP_MODEL = None


def get_pipeline(model_choice: str, clip_model: str):
    """Get or create pipeline for selected model and CLIP variant."""
    global CURRENT_PIPELINE, CURRENT_MODEL, CURRENT_CLIP_MODEL
    
    if CURRENT_PIPELINE is None or CURRENT_MODEL != model_choice or CURRENT_CLIP_MODEL != clip_model:
        CURRENT_PIPELINE = initialize_pipeline(model_choice, clip_model, device="cuda")
        CURRENT_MODEL = model_choice
        CURRENT_CLIP_MODEL = clip_model
    
    return CURRENT_PIPELINE


# ============================================================================
# INFERENCE
# ============================================================================

def estimate_duration(num_steps: int, width: int, height: int, use_lyra: bool = False) -> int:
    """Estimate GPU duration based on generation parameters."""
    # Base time per step (seconds)
    base_time_per_step = 0.3
    
    # Resolution scaling
    resolution_factor = (width * height) / (512 * 512)
    
    # Total estimate for one generation
    estimated = num_steps * base_time_per_step * resolution_factor
    
    # If Lyra enabled, we generate twice
    if use_lyra:
        estimated *= 2
        estimated += 2  # Extra overhead for dual generation
    
    # Add 15 seconds for model loading overhead
    return int(estimated + 15)


@spaces.GPU(duration=lambda *args: estimate_duration(args[4], args[6], args[7], args[11]))
def generate_image(
    prompt: str,
    negative_prompt: str,
    model_choice: str,
    clip_model: str,
    num_steps: int,
    cfg_scale: float,
    width: int,
    height: int,
    shift: float,
    use_flow_matching: bool,
    prediction_type: str,
    use_lyra: bool,
    seed: int,
    randomize_seed: bool,
    progress=gr.Progress()
):
    """Generate image with ZeroGPU support. Returns (standard_img, lyra_img, seed) or (img, None, seed)."""
    
    # Randomize seed if requested
    if randomize_seed:
        seed = np.random.randint(0, 2**32 - 1)
    
    # Progress tracking
    def progress_callback(step, total, desc):
        progress((step + 1) / total, desc=desc)
    
    try:
        # Get pipeline
        pipeline = get_pipeline(model_choice, clip_model)
        
        if not use_lyra or pipeline.lyra_model is None:
            # Standard generation only
            progress(0.05, desc="Generating (standard)...")
            
            image = pipeline(
                prompt=prompt,
                negative_prompt=negative_prompt,
                height=height,
                width=width,
                num_inference_steps=num_steps,
                guidance_scale=cfg_scale,
                shift=shift,
                use_flow_matching=use_flow_matching,
                prediction_type=prediction_type,
                seed=seed,
                use_lyra=False,
                progress_callback=progress_callback
            )
            
            progress(1.0, desc="Complete!")
            return image, None, seed
        
        else:
            # Generate both standard and Lyra versions
            progress(0.05, desc="Generating standard version...")
            
            image_standard = pipeline(
                prompt=prompt,
                negative_prompt=negative_prompt,
                height=height,
                width=width,
                num_inference_steps=num_steps,
                guidance_scale=cfg_scale,
                shift=shift,
                use_flow_matching=use_flow_matching,
                prediction_type=prediction_type,
                seed=seed,
                use_lyra=False,
                progress_callback=lambda s, t, d: progress(0.05 + (s/t) * 0.45, desc=d)
            )
            
            progress(0.5, desc="Generating Lyra fusion version...")
            
            image_lyra = pipeline(
                prompt=prompt,
                negative_prompt=negative_prompt,
                height=height,
                width=width,
                num_inference_steps=num_steps,
                guidance_scale=cfg_scale,
                shift=shift,
                use_flow_matching=use_flow_matching,
                prediction_type=prediction_type,
                seed=seed,
                use_lyra=True,
                progress_callback=lambda s, t, d: progress(0.5 + (s/t) * 0.45, desc=d)
            )
            
            progress(1.0, desc="Complete!")
            return image_standard, image_lyra, seed
    
    except Exception as e:
        print(f"❌ Generation failed: {e}")
        raise e


# ============================================================================
# GRADIO UI
# ============================================================================

def create_demo():
    """Create Gradio interface."""
    
    with gr.Blocks(theme=gr.themes.Soft()) as demo:
        gr.Markdown("""
        # πŸŒ™ Lyra/Lune Flow-Matching Image Generation
        
        **Geometric crystalline diffusion with flow matching** by [AbstractPhil](https://huggingface.co/AbstractPhil)
        
        Generate images using SD1.5-based models with geometric deep learning:
        - **Flow-Lune**: Flow matching with pentachoron geometric structures (15-25 steps)
        - **SD1.5 Base**: Standard Stable Diffusion 1.5 baseline
        - **Lyra VAE Toggle**: Add CLIP+T5 fusion for side-by-side comparison
        - **CLIP Variants**: Different text encoders for varied semantic understanding
        
        Enable Lyra to see both standard CLIP and geometric CLIP+T5 fusion results!
        """)
        
        with gr.Row():
            with gr.Column(scale=1):
                # Prompt - default to first example
                prompt = gr.TextArea(
                    label="Prompt",
                    value="A serene mountain landscape at golden hour, crystal clear lake reflecting snow-capped peaks, photorealistic, 8k",
                    lines=3
                )
                
                negative_prompt = gr.TextArea(
                    label="Negative Prompt",
                    placeholder="blurry, low quality, distorted...",
                    value="blurry, low quality",
                    lines=2
                )
                
                # Model selection
                model_choice = gr.Dropdown(
                    label="Base Model",
                    choices=[
                        "Flow-Lune (Latest)",
                        "SD1.5 Base"
                    ],
                    value="Flow-Lune (Latest)"
                )
                
                # CLIP model selection
                clip_model_choice = gr.Dropdown(
                    label="CLIP Model",
                    choices=[
                        "openai/clip-vit-large-patch14",
                        #"openai/clip-vit-large-patch14-336",
                        #"laion/CLIP-ViT-L-14-laion2B-s32B-b82K",
                        #"laion/CLIP-ViT-bigG-14-laion2B-39B-b160k"
                    ],
                    value="openai/clip-vit-large-patch14",
                    info="Text encoder variant"
                )
                
                # Lyra toggle
                use_lyra = gr.Checkbox(
                    label="Enable Lyra VAE (CLIP+T5 Fusion)",
                    value=True,
                    info="Generate side-by-side comparison with geometric fusion"
                )
                
                # Flow matching settings
                with gr.Accordion("Flow Matching Settings", open=True):
                    use_flow_matching = gr.Checkbox(
                        label="Enable Flow Matching",
                        value=True,
                        info="Use flow matching ODE integration"
                    )
                    
                    shift = gr.Slider(
                        label="Shift",
                        minimum=0.0,
                        maximum=5.0,
                        value=2.5,
                        step=0.1,
                        info="Flow matching shift parameter (0=disabled, 1-3 typical)"
                    )
                    
                    prediction_type = gr.Radio(
                        label="Prediction Type",
                        choices=["epsilon", "v_prediction"],
                        value="v_prediction",  # Default to v_prediction for Lune
                        info="Type of model prediction"
                    )
                
                # Generation settings
                with gr.Accordion("Generation Settings", open=True):
                    num_steps = gr.Slider(
                        label="Steps",
                        minimum=1,
                        maximum=50,
                        value=20,
                        step=1,
                        info="Flow matching typically needs fewer steps (15-25)"
                    )
                    
                    cfg_scale = gr.Slider(
                        label="CFG Scale",
                        minimum=1.0,
                        maximum=20.0,
                        value=7.5,
                        step=0.5
                    )
                    
                    with gr.Row():
                        width = gr.Slider(
                            label="Width",
                            minimum=256,
                            maximum=1024,
                            value=512,
                            step=64
                        )
                        
                        height = gr.Slider(
                            label="Height",
                            minimum=256,
                            maximum=1024,
                            value=512,
                            step=64
                        )
                    
                    seed = gr.Slider(
                        label="Seed",
                        minimum=0,
                        maximum=2**32 - 1,
                        value=42,
                        step=1
                    )
                    
                    randomize_seed = gr.Checkbox(
                        label="Randomize Seed",
                        value=True
                    )
                
                generate_btn = gr.Button("🎨 Generate", variant="primary", size="lg")
            
            with gr.Column(scale=1):
                with gr.Row():
                    output_image_standard = gr.Image(
                        label="Standard Generation",
                        type="pil",
                        visible=True
                    )
                    
                    output_image_lyra = gr.Image(
                        label="Lyra Fusion 🎡",
                        type="pil",
                        visible=True
                    )
                
                output_seed = gr.Number(
                    label="Used Seed",
                    precision=0
                )
                
                gr.Markdown("""
                ### Tips:
                - **Flow matching** works best with 15-25 steps (vs 50+ for standard diffusion)
                - **Shift** controls the flow trajectory (2.0-2.5 recommended for Lune)
                - Lower shift = more direct path, higher shift = more exploration
                - **Lune** uses v_prediction by default for optimal results
                - **Lyra toggle** generates side-by-side comparison (CLIP vs CLIP+T5 fusion)
                - **CLIP variants** may give different semantic interpretations
                - **SD1.5 Base** uses epsilon (standard diffusion)
                - Lune operates in a scaled latent space (5.52x) for geometric efficiency
                
                ### Model Info:
                - **Flow-Lune**: Trained with flow matching on 500k SD1.5 distillation pairs
                - **Lyra VAE**: Multi-modal fusion (CLIP+T5) via Cantor geometric attention
                - **SD1.5 Base**: Standard Stable Diffusion 1.5 for comparison
                
                ### CLIP Models:
                - **openai/clip-vit-large-patch14**: Standard CLIP-L (default)
                - **openai/clip-vit-large-patch14-336**: Higher resolution CLIP-L
                - **laion/CLIP-ViT-L-14**: LAION-trained CLIP-L variant
                - **laion/CLIP-ViT-bigG-14**: Larger CLIP-G model
                
                [πŸ“š Learn more about geometric deep learning](https://github.com/AbstractEyes/lattice_vocabulary)
                """)
        
        # Examples
        gr.Examples(
            examples=[
                [
                    "A serene mountain landscape at golden hour, crystal clear lake reflecting snow-capped peaks, photorealistic, 8k",
                    "blurry, low quality",
                    "Flow-Lune (Latest)",
                    "openai/clip-vit-large-patch14",
                    20,
                    7.5,
                    512,
                    512,
                    2.5,
                    True,
                    "v_prediction",
                    False,
                    42,
                    False
                ],
                [
                    "A futuristic cyberpunk city at night, neon lights, rain-slicked streets, highly detailed",
                    "low quality, blurry",
                    "Flow-Lune (Latest)",
                    "openai/clip-vit-large-patch14",
                    20,
                    7.5,
                    512,
                    512,
                    2.5,
                    True,
                    "v_prediction",
                    True,
                    123,
                    False
                ],
                [
                    "Portrait of a majestic lion, golden mane, dramatic lighting, wildlife photography",
                    "cartoon, painting",
                    "SD1.5 Base",
                    "openai/clip-vit-large-patch14",
                    30,
                    7.5,
                    512,
                    512,
                    0.0,
                    False,
                    "epsilon",
                    True,
                    456,
                    False
                ]
            ],
            inputs=[
                prompt, negative_prompt, model_choice, clip_model_choice, num_steps, cfg_scale,
                width, height, shift, use_flow_matching, prediction_type, use_lyra,
                seed, randomize_seed
            ],
            outputs=[output_image_standard, output_image_lyra, output_seed],
            fn=generate_image,
            cache_examples=False
        )
        
        # Event handlers
        
        # Update settings when model changes
        def on_model_change(model_name):
            """Update default settings based on model selection."""
            if model_name == "SD1.5 Base":
                # SD1.5: disable flow matching, use epsilon
                return {
                    use_flow_matching: gr.update(value=False),
                    prediction_type: gr.update(value="epsilon")
                }
            else:
                # Lune: enable flow matching, use v_prediction
                return {
                    use_flow_matching: gr.update(value=True),
                    prediction_type: gr.update(value="v_prediction")
                }
        
        # Update image visibility when Lyra toggle changes
        def on_lyra_toggle(lyra_enabled):
            """Show/hide Lyra comparison image."""
            if lyra_enabled:
                return {
                    output_image_standard: gr.update(visible=True, label="Standard CLIP"),
                    output_image_lyra: gr.update(visible=True, label="Lyra Fusion (CLIP+T5) 🎡")
                }
            else:
                return {
                    output_image_standard: gr.update(visible=True, label="Generated Image"),
                    output_image_lyra: gr.update(visible=False)
                }
        
        model_choice.change(
            fn=on_model_change,
            inputs=[model_choice],
            outputs=[use_flow_matching, prediction_type]
        )
        
        use_lyra.change(
            fn=on_lyra_toggle,
            inputs=[use_lyra],
            outputs=[output_image_standard, output_image_lyra]
        )
        on_lyra_toggle(True)
        
        generate_btn.click(
            fn=generate_image,
            inputs=[
                prompt, negative_prompt, model_choice, clip_model_choice, num_steps, cfg_scale,
                width, height, shift, use_flow_matching, prediction_type, use_lyra,
                seed, randomize_seed
            ],
            outputs=[output_image_standard, output_image_lyra, output_seed]
        )
    
    return demo


# ============================================================================
# LAUNCH
# ============================================================================

if __name__ == "__main__":
    demo = create_demo()
    demo.queue(max_size=20)
    demo.launch(show_api=False)