File size: 35,569 Bytes
eb8e393 30a0cde eb8e393 30a0cde eb8e393 e4fdf48 eb8e393 30a0cde e4fdf48 30a0cde eb8e393 30a0cde eb8e393 e4fdf48 eb8e393 e4fdf48 eb8e393 e4fdf48 eb8e393 e4fdf48 eb8e393 e4fdf48 eb8e393 5731dbc eb8e393 5731dbc eb8e393 5731dbc eb8e393 5731dbc eb8e393 1893c89 eb8e393 30a0cde eb8e393 30a0cde e4fdf48 e7c91d9 eb8e393 e7c91d9 eb8e393 1893c89 eb8e393 e7c91d9 eb8e393 e7c91d9 eb8e393 e7c91d9 eb8e393 e7c91d9 e4fdf48 e7c91d9 e4fdf48 eb8e393 1893c89 eb8e393 e7c91d9 eb8e393 1893c89 eb8e393 e4fdf48 eb8e393 1893c89 30a0cde eb8e393 30a0cde eb8e393 e7c91d9 30a0cde e7c91d9 eb8e393 e7c91d9 eb8e393 e7c91d9 eb8e393 30a0cde eb8e393 30a0cde e7c91d9 eb8e393 e7c91d9 eb8e393 e7c91d9 eb8e393 e7c91d9 eb8e393 e7c91d9 eb8e393 e7c91d9 eb8e393 e7c91d9 eb8e393 e7c91d9 eb8e393 e7c91d9 eb8e393 e7c91d9 eb8e393 30a0cde eb8e393 e7c91d9 e4fdf48 e7c91d9 eb8e393 1893c89 eb8e393 1893c89 eb8e393 1893c89 eb8e393 e7c91d9 eb8e393 e7c91d9 6e88f17 e7c91d9 6e88f17 e7c91d9 eb8e393 1893c89 eb8e393 e7c91d9 79e7eba e7c91d9 eb8e393 1893c89 e7c91d9 1893c89 eb8e393 e7c91d9 eb8e393 e7c91d9 eb8e393 e7c91d9 eb8e393 1893c89 e7c91d9 eb8e393 e7c91d9 e4fdf48 eb8e393 e7c91d9 eb8e393 e7c91d9 eb8e393 e7c91d9 eb8e393 e7c91d9 eb8e393 e7c91d9 eb8e393 1893c89 e7c91d9 1893c89 e7c91d9 5efbc3a e7c91d9 eb8e393 e7c91d9 eb8e393 e7c91d9 eb8e393 30a0cde eb8e393 30a0cde eb8e393 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 |
"""
Lyra/Lune Flow-Matching Inference Space
Author: AbstractPhil
License: MIT
SD1.5-based flow matching with geometric crystalline architectures.
"""
import os
import torch
import gradio as gr
import numpy as np
from PIL import Image
from typing import Optional, Dict
import spaces
from diffusers import (
UNet2DConditionModel,
AutoencoderKL,
DPMSolverMultistepScheduler,
EulerDiscreteScheduler
)
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5Tokenizer
from huggingface_hub import hf_hub_download
# Import Lyra VAE from geovocab2
try:
from geovocab2.train.model.vae.vae_lyra import MultiModalVAE, MultiModalVAEConfig
LYRA_AVAILABLE = True
except ImportError:
print("β οΈ Lyra VAE not available - install geovocab2")
LYRA_AVAILABLE = False
# ============================================================================
# MODEL LOADING
# ============================================================================
class FlowMatchingPipeline:
"""Custom pipeline for flow-matching inference."""
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler,
device: str = "cuda",
t5_encoder: Optional[T5EncoderModel] = None,
t5_tokenizer: Optional[T5Tokenizer] = None,
lyra_model: Optional[any] = None
):
self.vae = vae
self.text_encoder = text_encoder
self.tokenizer = tokenizer
self.unet = unet
self.scheduler = scheduler
self.device = device
# Lyra-specific components
self.t5_encoder = t5_encoder
self.t5_tokenizer = t5_tokenizer
self.lyra_model = lyra_model
# VAE scaling factor
self.vae_scale_factor = 0.18215
def encode_prompt(self, prompt: str, negative_prompt: str = ""):
"""Encode text prompts to embeddings."""
# Positive prompt
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids.to(self.device)
with torch.no_grad():
prompt_embeds = self.text_encoder(text_input_ids)[0]
# Negative prompt
if negative_prompt:
uncond_inputs = self.tokenizer(
negative_prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
uncond_input_ids = uncond_inputs.input_ids.to(self.device)
with torch.no_grad():
negative_prompt_embeds = self.text_encoder(uncond_input_ids)[0]
else:
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
return prompt_embeds, negative_prompt_embeds
def encode_prompt_lyra(self, prompt: str, negative_prompt: str = ""):
"""Encode text prompts using Lyra VAE (CLIP + T5 fusion)."""
if self.lyra_model is None or self.t5_encoder is None:
raise ValueError("Lyra VAE components not initialized")
# Get CLIP embeddings
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids.to(self.device)
with torch.no_grad():
clip_embeds = self.text_encoder(text_input_ids)[0]
# Get T5 embeddings
t5_inputs = self.t5_tokenizer(
prompt,
max_length=77,
padding='max_length',
truncation=True,
return_tensors='pt'
).to(self.device)
with torch.no_grad():
t5_embeds = self.t5_encoder(**t5_inputs).last_hidden_state
# Fuse through Lyra VAE
modality_inputs = {
'clip': clip_embeds,
't5': t5_embeds
}
with torch.no_grad():
reconstructions, mu, logvar = self.lyra_model(
modality_inputs,
target_modalities=['clip']
)
prompt_embeds = reconstructions['clip']
# Process negative prompt
if negative_prompt:
uncond_inputs = self.tokenizer(
negative_prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
uncond_input_ids = uncond_inputs.input_ids.to(self.device)
with torch.no_grad():
clip_embeds_uncond = self.text_encoder(uncond_input_ids)[0]
t5_inputs_uncond = self.t5_tokenizer(
negative_prompt,
max_length=77,
padding='max_length',
truncation=True,
return_tensors='pt'
).to(self.device)
with torch.no_grad():
t5_embeds_uncond = self.t5_encoder(**t5_inputs_uncond).last_hidden_state
modality_inputs_uncond = {
'clip': clip_embeds_uncond,
't5': t5_embeds_uncond
}
with torch.no_grad():
reconstructions_uncond, _, _ = self.lyra_model(
modality_inputs_uncond,
target_modalities=['clip']
)
negative_prompt_embeds = reconstructions_uncond['clip']
else:
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
return prompt_embeds, negative_prompt_embeds
@torch.no_grad()
def __call__(
self,
prompt: str,
negative_prompt: str = "",
height: int = 512,
width: int = 512,
num_inference_steps: int = 20,
guidance_scale: float = 7.5,
shift: float = 2.5,
use_flow_matching: bool = True,
prediction_type: str = "epsilon",
seed: Optional[int] = None,
use_lyra: bool = False,
progress_callback=None
):
"""Generate image using flow matching or standard diffusion."""
# Set seed
if seed is not None:
generator = torch.Generator(device=self.device).manual_seed(seed)
else:
generator = None
# Encode prompts - use Lyra if specified
if use_lyra and self.lyra_model is not None:
prompt_embeds, negative_prompt_embeds = self.encode_prompt_lyra(
prompt, negative_prompt
)
else:
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
prompt, negative_prompt
)
# Prepare latents
latent_channels = 4
latent_height = height // 8
latent_width = width // 8
latents = torch.randn(
(1, latent_channels, latent_height, latent_width),
generator=generator,
device=self.device,
dtype=torch.float32
)
# Set timesteps
self.scheduler.set_timesteps(num_inference_steps, device=self.device)
timesteps = self.scheduler.timesteps
# Scale initial latents by scheduler's init_noise_sigma for standard diffusion
# Flow matching uses unscaled latents and custom ODE integration
if not use_flow_matching:
latents = latents * self.scheduler.init_noise_sigma
# Denoising loop
for i, t in enumerate(timesteps):
if progress_callback:
progress_callback(i, num_inference_steps, f"Step {i+1}/{num_inference_steps}")
# Expand latents for classifier-free guidance
latent_model_input = torch.cat([latents] * 2) if guidance_scale > 1.0 else latents
# For standard diffusion, let scheduler handle scaling
# For flow matching, apply custom shift-based scaling
if use_flow_matching and shift > 0:
# Compute sigma from timestep with shift
sigma = t.float() / 1000.0
sigma_shifted = (shift * sigma) / (1 + (shift - 1) * sigma)
# Scale latent input for flow matching
scaling = torch.sqrt(1 + sigma_shifted ** 2)
latent_model_input = latent_model_input / scaling
else:
# For standard diffusion, scale by scheduler
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# Prepare timestep
timestep = t.expand(latent_model_input.shape[0])
# Predict noise/velocity
text_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) if guidance_scale > 1.0 else prompt_embeds
noise_pred = self.unet(
latent_model_input,
timestep,
encoder_hidden_states=text_embeds,
return_dict=False
)[0]
# Classifier-free guidance
if guidance_scale > 1.0:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# Flow matching step
if use_flow_matching:
# Manual flow matching update
sigma = t.float() / 1000.0
sigma_shifted = (shift * sigma) / (1 + (shift - 1) * sigma)
if prediction_type == "v_prediction":
# Convert v-prediction to epsilon
v_pred = noise_pred
alpha_t = torch.sqrt(1 - sigma_shifted ** 2)
sigma_t = sigma_shifted
noise_pred = alpha_t * v_pred + sigma_t * latents
# Compute next latent
dt = -1.0 / num_inference_steps
latents = latents + dt * noise_pred
else:
# Standard scheduler step
latents = self.scheduler.step(
noise_pred, t, latents, return_dict=False
)[0]
# Decode latents with model-specific scaling
latents = latents / self.vae_scale_factor
# Lune-specific scaling: multiply by 5.52 for Lune's latent space offset
# This must be applied ONLY for Lune model, not SD1.5 Base
if hasattr(self, 'is_lune_model') and self.is_lune_model:
latents = latents * 5.52
with torch.no_grad():
image = self.vae.decode(latents).sample
# Convert to PIL
image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
image = (image * 255).round().astype("uint8")
image = Image.fromarray(image[0])
return image
def load_lune_checkpoint(repo_id: str, filename: str, device: str = "cuda"):
"""Load Lune checkpoint from .pt file."""
print(f"π₯ Downloading checkpoint: {repo_id}/{filename}")
checkpoint_path = hf_hub_download(
repo_id=repo_id,
filename=filename,
repo_type="model"
)
print(f"β Downloaded to: {checkpoint_path}")
print(f"π¦ Loading checkpoint...")
checkpoint = torch.load(checkpoint_path, map_location="cpu")
# Initialize UNet with SD1.5 config
print(f"ποΈ Initializing SD1.5 UNet...")
unet = UNet2DConditionModel.from_pretrained(
"runwayml/stable-diffusion-v1-5",
subfolder="unet",
torch_dtype=torch.float32
)
# Load student weights
student_state_dict = checkpoint["student"]
# Strip "unet." prefix if present
cleaned_dict = {}
for key, value in student_state_dict.items():
if key.startswith("unet."):
cleaned_dict[key[5:]] = value
else:
cleaned_dict[key] = value
# Load weights
unet.load_state_dict(cleaned_dict, strict=False)
step = checkpoint.get("gstep", "unknown")
print(f"β
Loaded checkpoint from step {step}")
return unet.to(device)
def load_lyra_vae(repo_id: str = "AbstractPhil/vae-lyra", device: str = "cuda"):
"""Load Lyra VAE from HuggingFace."""
if not LYRA_AVAILABLE:
print("β οΈ Lyra VAE not available - geovocab2 not installed")
return None
print(f"π΅ Loading Lyra VAE from {repo_id}...")
try:
# Download checkpoint
checkpoint_path = hf_hub_download(
repo_id=repo_id,
filename="best_model.pt",
repo_type="model"
)
print(f"β Downloaded checkpoint: {checkpoint_path}")
# Load checkpoint
checkpoint = torch.load(checkpoint_path, map_location="cpu")
# Extract config
if 'config' in checkpoint:
config_dict = checkpoint['config']
else:
# Use default config
config_dict = {
'modality_dims': {"clip": 768, "t5": 768},
'latent_dim': 768,
'seq_len': 77,
'encoder_layers': 3,
'decoder_layers': 3,
'hidden_dim': 1024,
'dropout': 0.1,
'fusion_strategy': 'cantor',
'fusion_heads': 8,
'fusion_dropout': 0.1
}
# Create VAE config
vae_config = MultiModalVAEConfig(
modality_dims=config_dict.get('modality_dims', {"clip": 768, "t5": 768}),
latent_dim=config_dict.get('latent_dim', 768),
seq_len=config_dict.get('seq_len', 77),
encoder_layers=config_dict.get('encoder_layers', 3),
decoder_layers=config_dict.get('decoder_layers', 3),
hidden_dim=config_dict.get('hidden_dim', 1024),
dropout=config_dict.get('dropout', 0.1),
fusion_strategy=config_dict.get('fusion_strategy', 'cantor'),
fusion_heads=config_dict.get('fusion_heads', 8),
fusion_dropout=config_dict.get('fusion_dropout', 0.1)
)
# Create model
lyra_model = MultiModalVAE(vae_config)
# Load weights
if 'model_state_dict' in checkpoint:
lyra_model.load_state_dict(checkpoint['model_state_dict'])
else:
lyra_model.load_state_dict(checkpoint)
lyra_model.to(device)
lyra_model.eval()
# Print info
print(f"β
Lyra VAE loaded successfully")
if 'global_step' in checkpoint:
print(f" Training step: {checkpoint['global_step']:,}")
if 'best_loss' in checkpoint:
print(f" Best loss: {checkpoint['best_loss']:.4f}")
print(f" Fusion strategy: {vae_config.fusion_strategy}")
print(f" Latent dim: {vae_config.latent_dim}")
return lyra_model
except Exception as e:
print(f"β Failed to load Lyra VAE: {e}")
return None
def initialize_pipeline(model_choice: str, clip_model: str = "openai/clip-vit-large-patch14", device: str = "cuda"):
"""Initialize the complete pipeline."""
print(f"π Initializing {model_choice} pipeline...")
print(f" CLIP model: {clip_model}")
is_lune = "Lune" in model_choice
# Load base components
print("Loading VAE...")
vae = AutoencoderKL.from_pretrained(
"runwayml/stable-diffusion-v1-5",
subfolder="vae",
torch_dtype=torch.float32
).to(device)
print(f"Loading CLIP text encoder: {clip_model}...")
text_encoder = CLIPTextModel.from_pretrained(
clip_model,
torch_dtype=torch.float32
).to(device)
tokenizer = CLIPTokenizer.from_pretrained(
clip_model
)
# Always load T5 and Lyra for potential use
print("Loading T5-base encoder...")
t5_tokenizer = T5Tokenizer.from_pretrained("t5-base")
t5_encoder = T5EncoderModel.from_pretrained(
"t5-base",
torch_dtype=torch.float32
).to(device)
t5_encoder.eval()
print("β T5 loaded")
print("Loading Lyra VAE...")
lyra_model = load_lyra_vae(device=device)
if lyra_model is None:
print("β οΈ Lyra VAE not available - fusion disabled")
# Load UNet based on model choice
if is_lune:
# Load latest checkpoint from repo
repo_id = "AbstractPhil/sd15-flow-lune"
filename = "sd15_flow_lune_e34_s34000.pt"
unet = load_lune_checkpoint(repo_id, filename, device)
elif model_choice == "SD1.5 Base":
# Use standard SD1.5 UNet
print("Loading SD1.5 base UNet...")
unet = UNet2DConditionModel.from_pretrained(
"runwayml/stable-diffusion-v1-5",
subfolder="unet",
torch_dtype=torch.float32
).to(device)
else:
raise ValueError(f"Unknown model: {model_choice}")
# Initialize scheduler
scheduler = EulerDiscreteScheduler.from_pretrained(
"runwayml/stable-diffusion-v1-5",
subfolder="scheduler"
)
print("β
Pipeline initialized!")
pipeline = FlowMatchingPipeline(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
device=device,
t5_encoder=t5_encoder,
t5_tokenizer=t5_tokenizer,
lyra_model=lyra_model
)
# Set flag for Lune-specific VAE scaling
pipeline.is_lune_model = is_lune
return pipeline
# ============================================================================
# GLOBAL STATE
# ============================================================================
# Initialize with None, will load on first inference
CURRENT_PIPELINE = None
CURRENT_MODEL = None
CURRENT_CLIP_MODEL = None
def get_pipeline(model_choice: str, clip_model: str):
"""Get or create pipeline for selected model and CLIP variant."""
global CURRENT_PIPELINE, CURRENT_MODEL, CURRENT_CLIP_MODEL
if CURRENT_PIPELINE is None or CURRENT_MODEL != model_choice or CURRENT_CLIP_MODEL != clip_model:
CURRENT_PIPELINE = initialize_pipeline(model_choice, clip_model, device="cuda")
CURRENT_MODEL = model_choice
CURRENT_CLIP_MODEL = clip_model
return CURRENT_PIPELINE
# ============================================================================
# INFERENCE
# ============================================================================
def estimate_duration(num_steps: int, width: int, height: int, use_lyra: bool = False) -> int:
"""Estimate GPU duration based on generation parameters."""
# Base time per step (seconds)
base_time_per_step = 0.3
# Resolution scaling
resolution_factor = (width * height) / (512 * 512)
# Total estimate for one generation
estimated = num_steps * base_time_per_step * resolution_factor
# If Lyra enabled, we generate twice
if use_lyra:
estimated *= 2
estimated += 2 # Extra overhead for dual generation
# Add 15 seconds for model loading overhead
return int(estimated + 15)
@spaces.GPU(duration=lambda *args: estimate_duration(args[4], args[6], args[7], args[11]))
def generate_image(
prompt: str,
negative_prompt: str,
model_choice: str,
clip_model: str,
num_steps: int,
cfg_scale: float,
width: int,
height: int,
shift: float,
use_flow_matching: bool,
prediction_type: str,
use_lyra: bool,
seed: int,
randomize_seed: bool,
progress=gr.Progress()
):
"""Generate image with ZeroGPU support. Returns (standard_img, lyra_img, seed) or (img, None, seed)."""
# Randomize seed if requested
if randomize_seed:
seed = np.random.randint(0, 2**32 - 1)
# Progress tracking
def progress_callback(step, total, desc):
progress((step + 1) / total, desc=desc)
try:
# Get pipeline
pipeline = get_pipeline(model_choice, clip_model)
if not use_lyra or pipeline.lyra_model is None:
# Standard generation only
progress(0.05, desc="Generating (standard)...")
image = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
height=height,
width=width,
num_inference_steps=num_steps,
guidance_scale=cfg_scale,
shift=shift,
use_flow_matching=use_flow_matching,
prediction_type=prediction_type,
seed=seed,
use_lyra=False,
progress_callback=progress_callback
)
progress(1.0, desc="Complete!")
return image, None, seed
else:
# Generate both standard and Lyra versions
progress(0.05, desc="Generating standard version...")
image_standard = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
height=height,
width=width,
num_inference_steps=num_steps,
guidance_scale=cfg_scale,
shift=shift,
use_flow_matching=use_flow_matching,
prediction_type=prediction_type,
seed=seed,
use_lyra=False,
progress_callback=lambda s, t, d: progress(0.05 + (s/t) * 0.45, desc=d)
)
progress(0.5, desc="Generating Lyra fusion version...")
image_lyra = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
height=height,
width=width,
num_inference_steps=num_steps,
guidance_scale=cfg_scale,
shift=shift,
use_flow_matching=use_flow_matching,
prediction_type=prediction_type,
seed=seed,
use_lyra=True,
progress_callback=lambda s, t, d: progress(0.5 + (s/t) * 0.45, desc=d)
)
progress(1.0, desc="Complete!")
return image_standard, image_lyra, seed
except Exception as e:
print(f"β Generation failed: {e}")
raise e
# ============================================================================
# GRADIO UI
# ============================================================================
def create_demo():
"""Create Gradio interface."""
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# π Lyra/Lune Flow-Matching Image Generation
**Geometric crystalline diffusion with flow matching** by [AbstractPhil](https://huggingface.co/AbstractPhil)
Generate images using SD1.5-based models with geometric deep learning:
- **Flow-Lune**: Flow matching with pentachoron geometric structures (15-25 steps)
- **SD1.5 Base**: Standard Stable Diffusion 1.5 baseline
- **Lyra VAE Toggle**: Add CLIP+T5 fusion for side-by-side comparison
- **CLIP Variants**: Different text encoders for varied semantic understanding
Enable Lyra to see both standard CLIP and geometric CLIP+T5 fusion results!
""")
with gr.Row():
with gr.Column(scale=1):
# Prompt - default to first example
prompt = gr.TextArea(
label="Prompt",
value="A serene mountain landscape at golden hour, crystal clear lake reflecting snow-capped peaks, photorealistic, 8k",
lines=3
)
negative_prompt = gr.TextArea(
label="Negative Prompt",
placeholder="blurry, low quality, distorted...",
value="blurry, low quality",
lines=2
)
# Model selection
model_choice = gr.Dropdown(
label="Base Model",
choices=[
"Flow-Lune (Latest)",
"SD1.5 Base"
],
value="Flow-Lune (Latest)"
)
# CLIP model selection
clip_model_choice = gr.Dropdown(
label="CLIP Model",
choices=[
"openai/clip-vit-large-patch14",
#"openai/clip-vit-large-patch14-336",
#"laion/CLIP-ViT-L-14-laion2B-s32B-b82K",
#"laion/CLIP-ViT-bigG-14-laion2B-39B-b160k"
],
value="openai/clip-vit-large-patch14",
info="Text encoder variant"
)
# Lyra toggle
use_lyra = gr.Checkbox(
label="Enable Lyra VAE (CLIP+T5 Fusion)",
value=True,
info="Generate side-by-side comparison with geometric fusion"
)
# Flow matching settings
with gr.Accordion("Flow Matching Settings", open=True):
use_flow_matching = gr.Checkbox(
label="Enable Flow Matching",
value=True,
info="Use flow matching ODE integration"
)
shift = gr.Slider(
label="Shift",
minimum=0.0,
maximum=5.0,
value=2.5,
step=0.1,
info="Flow matching shift parameter (0=disabled, 1-3 typical)"
)
prediction_type = gr.Radio(
label="Prediction Type",
choices=["epsilon", "v_prediction"],
value="v_prediction", # Default to v_prediction for Lune
info="Type of model prediction"
)
# Generation settings
with gr.Accordion("Generation Settings", open=True):
num_steps = gr.Slider(
label="Steps",
minimum=1,
maximum=50,
value=20,
step=1,
info="Flow matching typically needs fewer steps (15-25)"
)
cfg_scale = gr.Slider(
label="CFG Scale",
minimum=1.0,
maximum=20.0,
value=7.5,
step=0.5
)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=1024,
value=512,
step=64
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=1024,
value=512,
step=64
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=2**32 - 1,
value=42,
step=1
)
randomize_seed = gr.Checkbox(
label="Randomize Seed",
value=True
)
generate_btn = gr.Button("π¨ Generate", variant="primary", size="lg")
with gr.Column(scale=1):
with gr.Row():
output_image_standard = gr.Image(
label="Standard Generation",
type="pil",
visible=True
)
output_image_lyra = gr.Image(
label="Lyra Fusion π΅",
type="pil",
visible=True
)
output_seed = gr.Number(
label="Used Seed",
precision=0
)
gr.Markdown("""
### Tips:
- **Flow matching** works best with 15-25 steps (vs 50+ for standard diffusion)
- **Shift** controls the flow trajectory (2.0-2.5 recommended for Lune)
- Lower shift = more direct path, higher shift = more exploration
- **Lune** uses v_prediction by default for optimal results
- **Lyra toggle** generates side-by-side comparison (CLIP vs CLIP+T5 fusion)
- **CLIP variants** may give different semantic interpretations
- **SD1.5 Base** uses epsilon (standard diffusion)
- Lune operates in a scaled latent space (5.52x) for geometric efficiency
### Model Info:
- **Flow-Lune**: Trained with flow matching on 500k SD1.5 distillation pairs
- **Lyra VAE**: Multi-modal fusion (CLIP+T5) via Cantor geometric attention
- **SD1.5 Base**: Standard Stable Diffusion 1.5 for comparison
### CLIP Models:
- **openai/clip-vit-large-patch14**: Standard CLIP-L (default)
- **openai/clip-vit-large-patch14-336**: Higher resolution CLIP-L
- **laion/CLIP-ViT-L-14**: LAION-trained CLIP-L variant
- **laion/CLIP-ViT-bigG-14**: Larger CLIP-G model
[π Learn more about geometric deep learning](https://github.com/AbstractEyes/lattice_vocabulary)
""")
# Examples
gr.Examples(
examples=[
[
"A serene mountain landscape at golden hour, crystal clear lake reflecting snow-capped peaks, photorealistic, 8k",
"blurry, low quality",
"Flow-Lune (Latest)",
"openai/clip-vit-large-patch14",
20,
7.5,
512,
512,
2.5,
True,
"v_prediction",
False,
42,
False
],
[
"A futuristic cyberpunk city at night, neon lights, rain-slicked streets, highly detailed",
"low quality, blurry",
"Flow-Lune (Latest)",
"openai/clip-vit-large-patch14",
20,
7.5,
512,
512,
2.5,
True,
"v_prediction",
True,
123,
False
],
[
"Portrait of a majestic lion, golden mane, dramatic lighting, wildlife photography",
"cartoon, painting",
"SD1.5 Base",
"openai/clip-vit-large-patch14",
30,
7.5,
512,
512,
0.0,
False,
"epsilon",
True,
456,
False
]
],
inputs=[
prompt, negative_prompt, model_choice, clip_model_choice, num_steps, cfg_scale,
width, height, shift, use_flow_matching, prediction_type, use_lyra,
seed, randomize_seed
],
outputs=[output_image_standard, output_image_lyra, output_seed],
fn=generate_image,
cache_examples=False
)
# Event handlers
# Update settings when model changes
def on_model_change(model_name):
"""Update default settings based on model selection."""
if model_name == "SD1.5 Base":
# SD1.5: disable flow matching, use epsilon
return {
use_flow_matching: gr.update(value=False),
prediction_type: gr.update(value="epsilon")
}
else:
# Lune: enable flow matching, use v_prediction
return {
use_flow_matching: gr.update(value=True),
prediction_type: gr.update(value="v_prediction")
}
# Update image visibility when Lyra toggle changes
def on_lyra_toggle(lyra_enabled):
"""Show/hide Lyra comparison image."""
if lyra_enabled:
return {
output_image_standard: gr.update(visible=True, label="Standard CLIP"),
output_image_lyra: gr.update(visible=True, label="Lyra Fusion (CLIP+T5) π΅")
}
else:
return {
output_image_standard: gr.update(visible=True, label="Generated Image"),
output_image_lyra: gr.update(visible=False)
}
model_choice.change(
fn=on_model_change,
inputs=[model_choice],
outputs=[use_flow_matching, prediction_type]
)
use_lyra.change(
fn=on_lyra_toggle,
inputs=[use_lyra],
outputs=[output_image_standard, output_image_lyra]
)
on_lyra_toggle(True)
generate_btn.click(
fn=generate_image,
inputs=[
prompt, negative_prompt, model_choice, clip_model_choice, num_steps, cfg_scale,
width, height, shift, use_flow_matching, prediction_type, use_lyra,
seed, randomize_seed
],
outputs=[output_image_standard, output_image_lyra, output_seed]
)
return demo
# ============================================================================
# LAUNCH
# ============================================================================
if __name__ == "__main__":
demo = create_demo()
demo.queue(max_size=20)
demo.launch(show_api=False) |