Spaces:
Runtime error
Runtime error
File size: 23,613 Bytes
78e4d98 30aae02 8d8b089 78e4d98 30aae02 5214b25 8d8b089 99586d3 8d8b089 e8be176 30aae02 5214b25 5750b4f 5214b25 e8be176 7945916 5214b25 5750b4f 5214b25 5750b4f 5214b25 5750b4f 5214b25 5750b4f 5214b25 5750b4f 5214b25 5750b4f 5214b25 2baad5f 5214b25 8d8b089 5214b25 8d8b089 30aae02 5214b25 30aae02 5214b25 30aae02 5214b25 30aae02 5214b25 30aae02 5214b25 30aae02 5214b25 30aae02 5214b25 8d8b089 5214b25 8ff1f8d 8d8b089 8ff1f8d 8d8b089 8ff1f8d 8d8b089 8ff1f8d 8d8b089 8ff1f8d 8d8b089 8ff1f8d 30aae02 2faf8d0 30aae02 2faf8d0 30aae02 2faf8d0 8ff1f8d 8d8b089 2faf8d0 8d8b089 7e44a95 8d8b089 30aae02 5214b25 30aae02 8d8b089 30aae02 8ff1f8d 30aae02 8ff1f8d 30aae02 8ff1f8d 8d8b089 5214b25 8d8b089 5214b25 30aae02 8d8b089 30aae02 7e44a95 8d8b089 7e44a95 8d8b089 2faf8d0 e8be176 2faf8d0 e8be176 2faf8d0 e8be176 2faf8d0 8d8b089 e8be176 8d8b089 7e44a95 8d8b089 2faf8d0 8d8b089 e8be176 8d8b089 30aae02 8d8b089 7e44a95 5214b25 8d8b089 8ff1f8d 8d8b089 7e44a95 8d8b089 7e44a95 8d8b089 2faf8d0 8d8b089 30aae02 8d8b089 7e44a95 e8be176 8d8b089 e8be176 8d8b089 e8be176 8d8b089 7e44a95 8d8b089 e8be176 8d8b089 e8be176 8d8b089 e8be176 8d8b089 e8be176 8d8b089 7e44a95 30aae02 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 |
# -*- coding: utf-8 -*-
"""
Created on Tue Feb 4 14:44:33 2025
@author: Ashmitha
"""
#-------------------------------------Libraries-------------------------
import pandas as pd
import numpy as np
import gradio as gr
from sklearn.metrics import mean_squared_error,r2_score
from scipy.stats import pearsonr
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import KFold
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import GRU,Dense,Dropout,BatchNormalization,LeakyReLU
from tensorflow.keras.optimizers import Adam
from tensorflow.keras import regularizers
from tensorflow.keras.callbacks import ReduceLROnPlateau,EarlyStopping
import os
from sklearn.preprocessing import MinMaxScaler
from keras.layers import Conv1D,MaxPooling1D,Dense,Flatten,Dropout,LeakyReLU
from keras.callbacks import ReduceLROnPlateau,EarlyStopping
from sklearn.ensemble import RandomForestRegressor
from xgboost import XGBRegressor
import io
from sklearn.feature_selection import SelectFromModel
import tempfile
import matplotlib.pyplot as plt
import seaborn as sns
#import lightgbm as lgb
import lightgbm as lgb
import numpy as np
from sklearn.model_selection import KFold
from sklearn.preprocessing import StandardScaler
from lightgbm import LGBMRegressor
from sklearn.svm import SVR
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
from lightgbm import LGBMRegressor
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
from sklearn.svm import SVR as SVR_Model
#--------------------------------------------------FNNModel-----------------------------------
def FNNModel(trainX, trainy, testX=None, testy=None, epochs=1000, batch_size=64, learning_rate=0.0001,
l1_reg=0.001, l2_reg=0.001, dropout_rate=0.2):
# Scale the input data
scaler = MinMaxScaler()
trainX_scaled = scaler.fit_transform(trainX)
testX_scaled = scaler.transform(testX) if testX is not None else None
# Scale the target variable
target_scaler = MinMaxScaler()
trainy_scaled = target_scaler.fit_transform(trainy.reshape(-1, 1))
# Model definition
model = Sequential()
# Input Layer
model.add(Dense(512, input_shape=(trainX.shape[1],), kernel_initializer='he_normal',
kernel_regularizer=regularizers.l1_l2(l1=l1_reg, l2=l2_reg)))
model.add(BatchNormalization())
model.add(Dropout(dropout_rate))
model.add(LeakyReLU(alpha=0.1))
# Hidden Layers
model.add(Dense(256, kernel_initializer='he_normal', kernel_regularizer=regularizers.l1_l2(l1=l1_reg, l2=l2_reg)))
model.add(BatchNormalization())
model.add(Dropout(dropout_rate))
model.add(LeakyReLU(alpha=0.1))
model.add(Dense(128, kernel_initializer='he_normal', kernel_regularizer=regularizers.l1_l2(l1=l1_reg, l2=l2_reg)))
model.add(BatchNormalization())
model.add(Dropout(dropout_rate))
model.add(LeakyReLU(alpha=0.1))
model.add(Dense(64, kernel_initializer='he_normal', kernel_regularizer=regularizers.l1_l2(l1=l1_reg, l2=l2_reg)))
model.add(BatchNormalization())
model.add(Dropout(dropout_rate))
model.add(LeakyReLU(alpha=0.1))
model.add(Dense(32, kernel_initializer='he_normal', kernel_regularizer=regularizers.l1_l2(l1=l1_reg, l2=l2_reg)))
model.add(BatchNormalization())
model.add(Dropout(dropout_rate))
model.add(LeakyReLU(alpha=0.1))
# Output Layer
model.add(Dense(1, activation="relu"))
# Compile Model
model.compile(loss='mse', optimizer=Adam(learning_rate=learning_rate), metrics=['mse'])
# Callbacks
callbacks = [
ReduceLROnPlateau(monitor='val_loss', patience=10, verbose=1, factor=0.5, min_lr=1e-6),
EarlyStopping(monitor='val_loss', verbose=1, restore_best_weights=True, patience=10)
]
# Train model
history = model.fit(trainX_scaled, trainy_scaled, epochs=epochs, batch_size=batch_size, validation_split=0.1,
verbose=1, callbacks=callbacks)
# Predictions
predicted_train = model.predict(trainX_scaled).flatten()
predicted_test = model.predict(testX_scaled).flatten() if testX is not None else None
# Inverse transform predictions
predicted_train = target_scaler.inverse_transform(predicted_train.reshape(-1, 1)).flatten()
if predicted_test is not None:
predicted_test = target_scaler.inverse_transform(predicted_test.reshape(-1, 1)).flatten()
return predicted_train, predicted_test, history
#--------------------------------------------------CNNModel-------------------------------------------
# CHANGE TO RNN MODEL OR DNN Model
def CNNModel(trainX, trainy, testX, testy, epochs=1000, batch_size=64, learning_rate=0.0001, l1_reg=0.0001, l2_reg=0.0001, dropout_rate=0.3,feature_selection=True):
# Scaling the inputs
scaler = MinMaxScaler()
trainX_scaled = scaler.fit_transform(trainX)
if testX is not None:
testX_scaled = scaler.transform(testX)
# Reshape for CNN input (samples, features, channels)
trainX = trainX_scaled.reshape((trainX.shape[0], trainX.shape[1], 1))
if testX is not None:
testX = testX_scaled.reshape((testX.shape[0], testX.shape[1], 1))
model = Sequential()
# Convolutional layers
model.add(Conv1D(512, kernel_size=3, activation='relu', input_shape=(trainX.shape[1], 1), kernel_regularizer=regularizers.l1_l2(l1=l1_reg, l2=l2_reg)))
model.add(MaxPooling1D(pool_size=2))
model.add(Dropout(dropout_rate))
model.add(Conv1D(256, kernel_size=3, activation='relu', kernel_regularizer=regularizers.l1_l2(l1=l1_reg, l2=l2_reg)))
model.add(MaxPooling1D(pool_size=2))
model.add(Dropout(dropout_rate))
model.add(Conv1D(128, kernel_size=3, activation='relu', kernel_regularizer=regularizers.l1_l2(l1=l1_reg, l2=l2_reg)))
model.add(MaxPooling1D(pool_size=2))
model.add(Dropout(dropout_rate))
# Flatten and Dense layers
model.add(Flatten())
model.add(Dense(64, kernel_regularizer=regularizers.l1_l2(l1=l1_reg, l2=l2_reg)))
model.add(LeakyReLU(alpha=0.1))
model.add(Dropout(dropout_rate))
model.add(Dense(1, activation='linear'))
# Compile the model
model.compile(loss='mse', optimizer=Adam(learning_rate=learning_rate), metrics=['mse'])
# Callbacks
learning_rate_reduction = ReduceLROnPlateau(monitor='val_loss', patience=5, verbose=1, factor=0.5, min_lr=1e-6)
early_stopping = EarlyStopping(monitor='val_loss', verbose=1, restore_best_weights=True, patience=10)
# Train the model
history = model.fit(trainX, trainy, epochs=epochs, batch_size=batch_size, validation_split=0.1, verbose=1,
callbacks=[learning_rate_reduction, early_stopping])
predicted_train = model.predict(trainX).flatten()
predicted_test = model.predict(testX).flatten() if testX is not None else None
return predicted_train, predicted_test, history
#-------------------------------------------LGBoost-----------------------------------------------
#def LGBoostModel(trainX, trainy, testX, testy, learning_rate=0.05, num_leaves=31, max_depth=-1, min_child_samples=20, n_estimators=500):
#scaler = StandardScaler()
#trainX_scaled = scaler.fit_transform(trainX)
#testX_scaled = scaler.transform(testX)
# Create and train the model
# lgbm_model = LGBMRegressor(
# n_estimators=n_estimators,
# learning_rate=learning_rate,
# num_leaves=num_leaves, # More leaves for complex data
# max_depth=max_depth, # No limit (-1) allows deeper trees
# min_child_samples=min_child_samples, # Minimum data needed to split
# reg_alpha=0.1, # L1 regularization
# reg_lambda=0.1, # L2 regularization
# )
# history = lgbm_model.fit(trainX_scaled, trainy)
# Predicting the values
# predicted_train = lgbm_model.predict(trainX_scaled)
# predicted_test = lgbm_model.predict(testX_scaled)
# return predicted_train, predicted_test, history
def LGBoostModel(trainX, trainy, testX, testy, learning_rate=0.05, num_leaves=15, max_depth=5, min_child_samples=10, n_estimators=1000):
"""
Train a LightGBM model with the given data and parameters.
"""
print(f"Training LightGBM Model with n_estimators={n_estimators}, learning_rate={learning_rate}, num_leaves={num_leaves}, max_depth={max_depth}")
# Standardizing the data
scaler = StandardScaler()
trainX_scaled = scaler.fit_transform(trainX)
testX_scaled = scaler.transform(testX)
# Create and train the model
lgbm_model = LGBMRegressor(
n_estimators=n_estimators,
learning_rate=learning_rate,
num_leaves=num_leaves,
max_depth=max_depth,
min_child_samples=min_child_samples,
reg_alpha=0.01, # Reduced L1 regularization
reg_lambda=0.01,
verbose=-1# Reduced L2 regularization
)
lgbm_model.fit(trainX_scaled, trainy)
# Predicting the values
predicted_train = lgbm_model.predict(trainX_scaled)
predicted_test = lgbm_model.predict(testX_scaled)
return predicted_train, predicted_test, lgbm_model
#------------------------------------------RFModel---------------------------------------------------
def RFModel(trainX, trainy, testX, testy, n_estimators=100, max_depth=None,feature_selection=True):
# Log transformation of the target variable
# Scaling the feature data
scaler = MinMaxScaler()
trainX_scaled = scaler.fit_transform(trainX)
if testX is not None:
testX_scaled = scaler.transform(testX)
# Define and train the RandomForest model
rf_model = RandomForestRegressor(n_estimators=n_estimators, max_depth=max_depth, random_state=42)
history=rf_model.fit(trainX_scaled, trainy)
# Predictions
predicted_train = rf_model.predict(trainX_scaled)
predicted_test = rf_model.predict(testX_scaled) if testX is not None else None
return predicted_train, predicted_test,history
#--------------------------------------SVR-------------------------------------
# Avoid function name conflict
def SVR(trainX, trainy, testX, testy, kernel='rbf', C=1.0, epsilon=0.1, gamma='scale'):
"""
Train a Support Vector Regression (SVR) model with the given data and parameters.
Parameters:
trainX, trainy: Training data (features & target)
testX, testy: Testing data (features & target)
kernel: 'linear', 'poly', 'rbf' (default is 'rbf')
C: Regularization parameter
epsilon: Defines a margin of tolerance where predictions don't get penalized
gamma: Kernel coefficient (used for 'rbf' and 'poly')
"""
print(f"Training SVR Model with kernel={kernel}, C={C}, epsilon={epsilon}, gamma={gamma}")
# Create a pipeline with scaling and SVR
svr_model = Pipeline([
('scaler', StandardScaler()),
('svr', SVR_Model(kernel=kernel, C=C, epsilon=epsilon, gamma=gamma))
])
# Train the model
svr_model.fit(trainX, trainy)
# Predict values
predicted_train = svr_model.predict(trainX)
predicted_test = svr_model.predict(testX)
return predicted_train, predicted_test, svr_model
#------------------------------------------------------------------File--------------------------------------------
def read_csv_file(uploaded_file):
if uploaded_file is not None:
if hasattr(uploaded_file, 'data'): # For NamedBytes
return pd.read_csv(io.BytesIO(uploaded_file.data))
elif hasattr(uploaded_file, 'name'): # For NamedString
return pd.read_csv(uploaded_file.name)
return None
#_-------------------------------------------------------------NestedKFold Cross Validation---------------------
def calculate_topsis_score(df):
# Normalize the data
norm_df = (df.iloc[:, 1:] - df.iloc[:, 1:].min()) / (df.iloc[:, 1:].max() - df.iloc[:, 1:].min())
# Calculate the positive and negative ideal solutions
ideal_positive = norm_df.max(axis=0)
ideal_negative = norm_df.min(axis=0)
# Calculate the Euclidean distances
dist_positive = np.sqrt(((norm_df - ideal_positive) ** 2).sum(axis=1))
dist_negative = np.sqrt(((norm_df - ideal_negative) ** 2).sum(axis=1))
# Calculate the TOPSIS score
topsis_score = dist_negative / (dist_positive + dist_negative)
# Add the TOPSIS score to the dataframe
df['TOPSIS_Score'] = topsis_score
return df
#----------------------------------------------------------NestedKFoldCrossValidation------------
def NestedKFoldCrossValidation(training_data, training_additive, testing_data, testing_additive,
training_dominance, testing_dominance, epochs, learning_rate, min_child_weight, batch_size=64,
outer_n_splits=2, kernel='rbf', C=1.0, epsilon=0.1, gamma='scale', output_file='cross_validation_results.csv',
predicted_phenotype_file='predicted_phenotype.csv', feature_selection=True):
# Define calculate_topsis_score before using it
# Original function logic continues here
if 'phenotypes' not in training_data.columns:
raise ValueError("Training data does not contain the 'phenotypes' column.")
# Remove Sample ID columns from additive and dominance data
training_additive = training_additive.iloc[:, 1:]
testing_additive = testing_additive.iloc[:, 1:]
training_dominance = training_dominance.iloc[:, 1:]
testing_dominance = testing_dominance.iloc[:, 1:]
A_square_training=training_additive**2
D_square_training=training_dominance**2
A_square_testing=testing_additive**2
D_square_testing=testing_dominance**2
additive_dominance_training=training_additive*training_dominance
additive_dominance_testing=testing_additive*testing_dominance
training_data_merged=np.concatenate([training_additive,training_dominance,A_square_training,D_square_training,additive_dominance_training], axis=1)
testing_data_merged=np.concatenate([testing_additive,testing_dominance,A_square_testing,D_square_testing,additive_dominance_testing], axis=1)
phenotypic_info=training_data['phenotypes'].values
phenotypic_test_info=testing_data['phenotypes'].values if 'phenotypes' in testing_data.columns else None
sample_ids=testing_data.iloc[:,0].values
training_data_merged=pd.DataFrame(training_data_merged)
testing_data_merged=pd.DataFrame(testing_data_merged)
training_genotypic_data_merged=training_data_merged.iloc[:,1:].values
testing_genotypic_data_merged=testing_data_merged.iloc[:,1:].values
print(training_genotypic_data_merged)
print(testing_genotypic_data_merged)
outer_kf=KFold(n_splits=outer_n_splits)
results=[]
all_predicted_phenotypes=[]
def calculate_metrics(true_values,predicted_values):
mse=mean_squared_error(true_values,predicted_values)
rmse=np.sqrt(mse)
r2=r2_score(true_values,predicted_values)
corr=pearsonr(true_values,predicted_values)[0]
return mse,rmse,corr,r2
models=[
('FNNModel',FNNModel),
('CNNModel', CNNModel),
('RFModel',RFModel),
('LGBoostModel',LGBoostModel),
('SVR',SVR)
]
for outer_fold, (outer_train_index, outer_test_index) in enumerate(outer_kf.split(phenotypic_info), 1):
outer_trainX = training_genotypic_data_merged[outer_train_index]
outer_trainy = phenotypic_info[outer_train_index]
if feature_selection:
rf = RandomForestRegressor(n_estimators=100, random_state=42)
rf.fit(outer_trainX, outer_trainy)
selector = SelectFromModel(rf, threshold="mean", prefit=True)
outer_trainX = selector.transform(outer_trainX)
testing_genotypic_data_merged_fold = selector.transform(testing_genotypic_data_merged) # Transform testing data
else:
testing_genotypic_data_merged_fold = testing_genotypic_data_merged
scaler = StandardScaler()
outer_trainX = scaler.fit_transform(outer_trainX) # Fit and transform on outer_trainX
testing_genotypic_data_merged_fold = scaler.transform(testing_genotypic_data_merged_fold) # Transform testing data
outer_testX = testing_genotypic_data_merged_fold
outer_testy = phenotypic_test_info
for model_name, model_func in models:
print(f"Running model: {model_name} for fold {outer_fold}")
if model_name in ['FNNModel', 'CNNModel']:
predicted_train, predicted_test, history = model_func(outer_trainX, outer_trainy, outer_testX, outer_testy, epochs=epochs, batch_size=batch_size)
elif model_name in ['RFModel']:
predicted_train, predicted_test, history = model_func(outer_trainX, outer_trainy, outer_testX, outer_testy)
elif model_name in ['LGBoostModel']:
predicted_train, predicted_test, history = model_func(outer_trainX, outer_trainy, outer_testX, outer_testy,learning_rate=0.05, num_leaves=31, max_depth=-1, min_child_samples=20, n_estimators=500)
else:
predicted_train, predicted_test, svr_model=model_func(outer_trainX,outer_trainy,outer_testX,outer_testy,kernel='rbf', C=1.0, epsilon=0.1, gamma='scale')
# Calculate metrics
mse_train, rmse_train, r2_train, corr_train = calculate_metrics(outer_trainy, predicted_train)
mse_test, rmse_test, r2_test, corr_test = calculate_metrics(outer_testy, predicted_test) if outer_testy is not None else (None, None, None, None)
results.append({
'Model': model_name,
'Fold': outer_fold,
'Train_MSE': mse_train,
'Train_RMSE': rmse_train,
'Train_R2': r2_train,
'Train_Corr': corr_train,
'Test_MSE': mse_test,
'Test_RMSE': rmse_test,
'Test_R2': r2_test,
'Test_Corr': corr_test
})
if predicted_test is not None:
predicted_test_df = pd.DataFrame({
'Sample_ID': sample_ids,
'Predicted_Phenotype': predicted_test,
'Model': model_name
})
all_predicted_phenotypes.append(predicted_test_df)
# Compile results
results_df = pd.DataFrame(results)
# Calculate the average metrics for each model
if 'phenotypes' in testing_data.columns:
avg_results_df = results_df.groupby('Model').agg({
# 'Train_MSE': 'mean',
# 'Train_RMSE': 'mean',
'Train_R2': 'mean',
'Train_Corr': 'mean',
#'Test_MSE': 'mean',
#'Test_RMSE': 'mean',
'Test_R2': 'mean',
'Test_Corr': 'mean'
}).reset_index()
else:
avg_results_df = results_df.groupby('Model').agg({
#'Train_MSE': 'mean',
# 'Train_RMSE': 'mean',
'Train_R2': 'mean',
'Train_Corr': 'mean'
}).reset_index()
avg_results_df = calculate_topsis_score(avg_results_df)
print(avg_results_df)
# Save the results with TOPSIS scores to the file
avg_results_df.to_csv(output_file, index=False)
# Save predicted phenotypes
if all_predicted_phenotypes:
predicted_all_df = pd.concat(all_predicted_phenotypes, axis=0, ignore_index=True)
predicted_all_df.to_csv(predicted_phenotype_file, index=False)
return avg_results_df, predicted_all_df if all_predicted_phenotypes else None
def visualize_topsis_scores(results_df):
"""
Function to visualize the TOPSIS scores as a bar chart.
"""
if 'TOPSIS_Score' not in results_df.columns:
print("TOPSIS scores are missing in the DataFrame!")
return None
plt.figure(figsize=(10, 6))
sns.barplot(x='Model', y='TOPSIS_Score', data=results_df, palette="viridis")
plt.xlabel("Models", fontsize=12)
plt.ylabel("TOPSIS Score", fontsize=12)
plt.title("Model Performance - TOPSIS Score", fontsize=14)
plt.xticks(rotation=45)
plt.tight_layout()
# Save the figure
plt.savefig("topsis_scores.png")
return "topsis_scores.png"
def run_cross_validation(training_file, training_additive_file, testing_file, testing_additive_file,
training_dominance_file, testing_dominance_file, feature_selection, learning_rate, min_child_weight,kernel,C,epsilon,gamma):
# Default parameters
epochs = 1000
batch_size = 64
outer_n_splits = 2
# Load datasets
training_data = pd.read_csv(training_file.name)
training_additive = pd.read_csv(training_additive_file.name)
testing_data = pd.read_csv(testing_file.name)
testing_additive = pd.read_csv(testing_additive_file.name)
training_dominance = pd.read_csv(training_dominance_file.name)
testing_dominance = pd.read_csv(testing_dominance_file.name)
# Call the cross-validation function
results, predicted_phenotypes = NestedKFoldCrossValidation(
training_data=training_data,
training_additive=training_additive,
testing_data=testing_data,
testing_additive=testing_additive,
training_dominance=training_dominance,
testing_dominance=testing_dominance,
epochs=epochs,
batch_size=batch_size,
outer_n_splits=outer_n_splits,
learning_rate=learning_rate,
min_child_weight=min_child_weight,
feature_selection=feature_selection,
kernel='rbf',
C=1.0,
epsilon=0.1,
gamma='scale'
)
# Save outputs
#results_file = "cross_validation_results.csv"
predicted_file = "predicted_phenotype.csv"
#results.to_csv(results_file, index=False)
if predicted_phenotypes is not None:
predicted_phenotypes.to_csv(predicted_file, index=False)
# Generate visualization of TOPSIS scores
topsis_plot = visualize_topsis_scores(results)
return predicted_file, topsis_plot
# Gradio interface
with gr.Blocks() as interface:
gr.Markdown("# DeepMap - An Integrated GUI for Genotype to Phenotype Prediction")
with gr.Row():
training_file = gr.File(label="Upload Training Data (CSV)")
training_additive_file = gr.File(label="Upload Training Additive Data (CSV)")
training_dominance_file = gr.File(label="Upload Training Dominance Data (CSV)")
with gr.Row():
testing_file = gr.File(label="Upload Testing Data (CSV)")
testing_additive_file = gr.File(label="Upload Testing Additive Data (CSV)")
testing_dominance_file = gr.File(label="Upload Testing Dominance Data (CSV)")
with gr.Row():
feature_selection = gr.Checkbox(label="Enable Feature Selection", value=True)
#output1 = gr.File(label="Cross-Validation Results (CSV)")
output2 = gr.File(label="Predicted Phenotypes (CSV)")
output3 = gr.Image(label="TOPSIS Score Visualization")
submit_btn = gr.Button("Run DeepMap")
submit_btn.click(
run_cross_validation,
inputs=[
training_file, training_additive_file, testing_file,
testing_additive_file, training_dominance_file, testing_dominance_file,
feature_selection
],
outputs=[output2, output3]
)
# Launch the interface
interface.launch()
|