Quiz_Solver_Agent / README.md
Niloy
Initial commit: LLM Analysis Quiz Solver Agent
df532e4
metadata
title: LLM Analysis Quiz Solver
emoji: πŸƒ
colorFrom: red
colorTo: blue
sdk: docker
pinned: false
app_port: 7860

LLM Analysis - Autonomous Quiz Solver Agent

License: MIT Python 3.12+ FastAPI

An intelligent, autonomous agent built with LangGraph and LangChain that solves data-related quizzes involving web scraping, data processing, analysis, and visualization tasks. The system uses Google's Gemini 2.5 Flash model to orchestrate tool usage and make decisions.

πŸ“‹ Table of Contents

πŸ” Overview

This project was developed for the TDS (Tools in Data Science) course project, where the objective is to build an application that can autonomously solve multi-step quiz tasks involving:

  • Data sourcing: Scraping websites, calling APIs, downloading files
  • Data preparation: Cleaning text, PDFs, and various data formats
  • Data analysis: Filtering, aggregating, statistical analysis, ML models
  • Data visualization: Generating charts, narratives, and presentations

The system receives quiz URLs via a REST API, navigates through multiple quiz pages, solves each task using LLM-powered reasoning and specialized tools, and submits answers back to the evaluation server.

πŸ—οΈ Architecture

The project uses a LangGraph state machine architecture with the following components:

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚   FastAPI   β”‚  ← Receives POST requests with quiz URLs
β”‚   Server    β”‚
β””β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”˜
       β”‚
       β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚   Agent     β”‚  ← LangGraph orchestrator with Gemini 2.5 Flash
β”‚   (LLM)     β”‚
β””β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”˜
       β”‚
       β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
       β–Ό            β–Ό            β–Ό             β–Ό              β–Ό
   [Scraper]   [Downloader]  [Code Exec]  [POST Req]  [Add Deps]

Key Components:

  1. FastAPI Server (main.py): Handles incoming POST requests, validates secrets, and triggers the agent
  2. LangGraph Agent (agent.py): State machine that coordinates tool usage and decision-making
  3. Tools Package (tools/): Modular tools for different capabilities
  4. LLM: Google Gemini 2.5 Flash with rate limiting (9 requests per minute)

✨ Features

  • βœ… Autonomous multi-step problem solving: Chains together multiple quiz pages
  • βœ… Dynamic JavaScript rendering: Uses Playwright for client-side rendered pages
  • βœ… Code generation & execution: Writes and runs Python code for data tasks
  • βœ… Flexible data handling: Downloads files, processes PDFs, CSVs, images, etc.
  • βœ… Self-installing dependencies: Automatically adds required Python packages
  • βœ… Robust error handling: Retries failed attempts within time limits
  • βœ… Docker containerization: Ready for deployment on HuggingFace Spaces or cloud platforms
  • βœ… Rate limiting: Respects API quotas with exponential backoff

πŸ“ Project Structure

LLM-Analysis-TDS-Project-2/
β”œβ”€β”€ agent.py                    # LangGraph state machine & orchestration
β”œβ”€β”€ main.py                     # FastAPI server with /solve endpoint
β”œβ”€β”€ pyproject.toml              # Project dependencies & configuration
β”œβ”€β”€ Dockerfile                  # Container image with Playwright
β”œβ”€β”€ .env                        # Environment variables (not in repo)
β”œβ”€β”€ tools/
β”‚   β”œβ”€β”€ __init__.py
β”‚   β”œβ”€β”€ web_scraper.py          # Playwright-based HTML renderer
β”‚   β”œβ”€β”€ code_generate_and_run.py # Python code executor
β”‚   β”œβ”€β”€ download_file.py        # File downloader
β”‚   β”œβ”€β”€ send_request.py         # HTTP POST tool
β”‚   └── add_dependencies.py     # Package installer
└── README.md

πŸ“¦ Installation

Prerequisites

  • Python 3.12 or higher
  • uv package manager (recommended) or pip
  • Git

Step 1: Clone the Repository

git clone https://github.com/saivijayragav/LLM-Analysis-TDS-Project-2.git
cd LLM-Analysis-TDS-Project-2

Step 2: Install Dependencies

Option A: Using uv (Recommended)

Ensure you have uv installed, then sync the project:

# Install uv if you haven't already  
pip install uv

# Sync dependencies  
uv sync
uv run playwright install chromium

Start the FastAPI server:

uv run main.py

The server will start at http://0.0.0.0:7860.

Option B: Using pip

# Create virtual environment
python -m venv venv
.\venv\Scripts\activate  # Windows
# source venv/bin/activate  # macOS/Linux

# Install dependencies
pip install -e .

# Install Playwright browsers
playwright install chromium

βš™οΈ Configuration

Environment Variables

Create a .env file in the project root:

# Your credentials from the Google Form submission
EMAIL=your.email@example.com
SECRET=your_secret_string

# Google Gemini API Key
GOOGLE_API_KEY=your_gemini_api_key_here

Getting a Gemini API Key

  1. Visit Google AI Studio
  2. Create a new API key
  3. Copy it to your .env file

πŸš€ Usage

Local Development

Start the FastAPI server:

# If using uv
uv run main.py

# If using standard Python
python main.py

The server will start on http://0.0.0.0:7860

Testing the Endpoint

Send a POST request to test your setup:

curl -X POST http://localhost:7860/solve \
  -H "Content-Type: application/json" \
  -d '{
    "email": "your.email@example.com",
    "secret": "your_secret_string",
    "url": "https://tds-llm-analysis.s-anand.net/demo"
  }'

Expected response:

{
  "status": "ok"
}

The agent will run in the background and solve the quiz chain autonomously.

🌐 API Endpoints

POST /solve

Receives quiz tasks and triggers the autonomous agent.

Request Body:

{
  "email": "your.email@example.com",
  "secret": "your_secret_string",
  "url": "https://example.com/quiz-123"
}

Responses:

Status Code Description
200 Secret verified, agent started
400 Invalid JSON payload
403 Invalid secret

GET /healthz

Health check endpoint for monitoring.

Response:

{
  "status": "ok",
  "uptime_seconds": 3600
}

πŸ› οΈ Tools & Capabilities

The agent has access to the following tools:

1. Web Scraper (get_rendered_html)

  • Uses Playwright to render JavaScript-heavy pages
  • Waits for network idle before extracting content
  • Returns fully rendered HTML for parsing

2. File Downloader (download_file)

  • Downloads files (PDFs, CSVs, images, etc.) from direct URLs
  • Saves files to LLMFiles/ directory
  • Returns the saved filename

3. Code Executor (run_code)

  • Executes arbitrary Python code in an isolated subprocess
  • Returns stdout, stderr, and exit code
  • Useful for data processing, analysis, and visualization

4. POST Request (post_request)

  • Sends JSON payloads to submission endpoints
  • Includes automatic error handling and response parsing
  • Prevents resubmission if answer is incorrect and time limit exceeded

5. Dependency Installer (add_dependencies)

  • Dynamically installs Python packages as needed
  • Uses uv add for fast package resolution
  • Enables the agent to adapt to different task requirements

🐳 Docker Deployment

Build the Image

docker build -t llm-analysis-agent .

Run the Container

docker run -p 7860:7860 \
  -e EMAIL="your.email@example.com" \
  -e SECRET="your_secret_string" \
  -e GOOGLE_API_KEY="your_api_key" \
  llm-analysis-agent

Deploy to HuggingFace Spaces

  1. Create a new Space with Docker SDK
  2. Push this repository to your Space
  3. Add secrets in Space settings:
    • EMAIL
    • SECRET
    • GOOGLE_API_KEY
  4. The Space will automatically build and deploy

🧠 How It Works

1. Request Reception

  • FastAPI receives a POST request with quiz URL
  • Validates the secret against environment variables
  • Returns 200 OK and starts the agent in the background

2. Agent Initialization

  • LangGraph creates a state machine with two nodes: agent and tools
  • The initial state contains the quiz URL as a user message

3. Task Loop

The agent follows this loop:

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ 1. LLM analyzes current state           β”‚
β”‚    - Reads quiz page instructions       β”‚
β”‚    - Plans tool usage                   β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                  β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ 2. Tool execution                       β”‚
β”‚    - Scrapes page / downloads files     β”‚
β”‚    - Runs analysis code                 β”‚
β”‚    - Submits answer                     β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                  β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ 3. Response evaluation                  β”‚
β”‚    - Checks if answer is correct        β”‚
β”‚    - Extracts next quiz URL (if exists) β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                  β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ 4. Decision                             β”‚
β”‚    - If new URL exists: Loop to step 1  β”‚
β”‚    - If no URL: Return "END"            β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

4. State Management

  • All messages (user, assistant, tool) are stored in state
  • The LLM uses full history to make informed decisions
  • Recursion limit set to 200 to handle long quiz chains

5. Completion

  • Agent returns "END" when no new URL is provided
  • Background task completes
  • Logs indicate success or failure

πŸ“ Key Design Decisions

  1. LangGraph over Sequential Execution: Allows flexible routing and complex decision-making
  2. Background Processing: Prevents HTTP timeouts for long-running quiz chains
  3. Tool Modularity: Each tool is independent and can be tested/debugged separately
  4. Rate Limiting: Prevents API quota exhaustion (9 req/min for Gemini)
  5. Code Execution: Dynamically generates and runs Python for complex data tasks
  6. Playwright for Scraping: Handles JavaScript-rendered pages that requests cannot
  7. uv for Dependencies: Fast package resolution and installation

πŸ“„ License

This project is licensed under the MIT License. See the LICENSE file for details.


Author: Syph0n9 Course: Tools in Data Science (TDS) Institution: IIT Madras