MyPersonalLifeCoach / life_coach_v1_old.py
Alessandro Piana
dockerfile con logging 61
ad3a64a
#!/usr/bin/env python3
"""
Life Coach v1 - Phi-4 Fine-tuned Life Coaching Assistant
A simple command-line life coaching assistant using Microsoft's Phi-4 model.
Fine-tunes on life coaching conversations and provides interactive chat sessions.
"""
import torch
import json
import os
import gc
import argparse
from pathlib import Path
from typing import Optional
from tqdm import tqdm
# Set PyTorch CUDA memory allocation config to reduce fragmentation
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True'
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
TrainingArguments,
Trainer,
DataCollatorForSeq2Seq
)
from datasets import Dataset, load_dataset, concatenate_datasets
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training, TaskType
import logging
import random
import shutil
import gzip
from typing import List, Dict
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
def cleanup_gpu_memory():
"""
Clean up GPU memory before starting the program.
Clears PyTorch cache and runs garbage collection.
"""
logger.info("=" * 80)
logger.info("GPU MEMORY CLEANUP")
logger.info("=" * 80)
if torch.cuda.is_available():
# Clear PyTorch CUDA cache
torch.cuda.empty_cache()
# Run garbage collection
gc.collect()
# Get GPU memory stats
for i in range(torch.cuda.device_count()):
total = torch.cuda.get_device_properties(i).total_memory / 1024**3
reserved = torch.cuda.memory_reserved(i) / 1024**3
allocated = torch.cuda.memory_allocated(i) / 1024**3
free = total - reserved
logger.info(f"GPU {i}: {torch.cuda.get_device_name(i)}")
logger.info(f" Total memory: {total:.2f} GB")
logger.info(f" Reserved: {reserved:.2f} GB")
logger.info(f" Allocated: {allocated:.2f} GB")
logger.info(f" Free: {free:.2f} GB")
if reserved > 1.0: # More than 1GB reserved
logger.warning(f" ⚠️ GPU {i} has {reserved:.2f} GB reserved!")
logger.warning(f" ⚠️ This might be from a previous run.")
logger.warning(f" ⚠️ If you encounter OOM errors, kill other processes using:")
logger.warning(f" ⚠️ nvidia-smi | grep python")
else:
logger.warning("No CUDA GPUs available! Running on CPU (very slow).")
logger.info("=" * 80)
def clear_hf_cache():
"""Clear Hugging Face datasets cache to save disk space."""
try:
from datasets import config
cache_dir = config.HF_DATASETS_CACHE
if os.path.exists(cache_dir):
# Get size before clearing
size_mb = sum(os.path.getsize(os.path.join(dirpath,filename))
for dirpath, _, filenames in os.walk(cache_dir)
for filename in filenames) / (1024 * 1024)
logger.info(f"Clearing HF cache ({size_mb:.1f} MB)...")
shutil.rmtree(cache_dir, ignore_errors=True)
os.makedirs(cache_dir, exist_ok=True)
logger.info("✓ Cache cleared")
except Exception as e:
logger.warning(f"Failed to clear cache: {e}")
def load_mental_health_counseling() -> List[Dict]:
"""Load Amod/mental_health_counseling_conversations dataset - ALL samples."""
logger.info(f"Loading mental health counseling dataset...")
try:
dataset = load_dataset("Amod/mental_health_counseling_conversations", split="train")
logger.info(f" Dataset has {len(dataset)} samples available")
conversations = []
for item in dataset:
# Format: Context (user) -> Response (assistant)
conversations.append({
"messages": [
{"role": "user", "content": item.get("Context", "").strip()},
{"role": "assistant", "content": item.get("Response", "").strip()}
]
})
logger.info(f"✓ Loaded {len(conversations)} mental health counseling conversations")
return conversations
except Exception as e:
logger.warning(f"Failed to load mental health counseling dataset: {e}")
return []
def load_counsel_chat() -> List[Dict]:
"""Load nbertagnolli/counsel-chat dataset - ALL samples."""
logger.info(f"Loading CounselChat (nbertagnolli) dataset...")
try:
dataset = load_dataset("nbertagnolli/counsel-chat", split="train")
logger.info(f" Dataset has {len(dataset)} samples available")
conversations = []
for item in dataset:
# Try different possible field names
question = None
answer = None
# Common field patterns
for q_field in ["questionText", "question", "query", "input", "user_message"]:
if q_field in item and item.get(q_field):
question = item[q_field].strip()
break
for a_field in ["answerText", "answer", "response", "output", "counselor_message"]:
if a_field in item and item.get(a_field):
answer = item[a_field].strip()
break
if question and answer:
conversations.append({
"messages": [
{"role": "user", "content": question},
{"role": "assistant", "content": answer}
]
})
logger.info(f"✓ Loaded {len(conversations)} CounselChat conversations")
return conversations
except Exception as e:
logger.warning(f"Failed to load CounselChat dataset: {e}")
return []
def load_cbt_cognitive_distortions() -> List[Dict]:
"""Load epsilon3/cbt-cognitive-distortions-analysis dataset - ALL samples."""
logger.info(f"Loading CBT Cognitive Distortions dataset...")
try:
dataset = load_dataset("epsilon3/cbt-cognitive-distortions-analysis", split="train")
logger.info(f" Dataset has {len(dataset)} samples available")
conversations = []
for item in dataset:
# Try different field patterns
user_msg = None
assistant_msg = None
for u_field in ["input", "text", "thought", "statement", "user_input"]:
if u_field in item and item.get(u_field):
user_msg = item[u_field].strip()
break
for a_field in ["output", "analysis", "reframe", "response", "cbt_response"]:
if a_field in item and item.get(a_field):
assistant_msg = item[a_field].strip()
break
if user_msg and assistant_msg:
conversations.append({
"messages": [
{"role": "user", "content": user_msg},
{"role": "assistant", "content": assistant_msg}
]
})
logger.info(f"✓ Loaded {len(conversations)} CBT Cognitive Distortions conversations")
return conversations
except Exception as e:
logger.warning(f"Failed to load CBT Cognitive Distortions dataset: {e}")
return []
def load_peer_counseling_reflections() -> List[Dict]:
"""Load emoneil/reflections-in-peer-counseling dataset - ALL samples."""
logger.info(f"Loading Peer Counseling Reflections dataset...")
try:
dataset = load_dataset("emoneil/reflections-in-peer-counseling", split="train")
logger.info(f" Dataset has {len(dataset)} samples available")
conversations = []
for item in dataset:
# Try different field patterns
user_msg = None
assistant_msg = None
for u_field in ["question", "statement", "input", "user_message", "counselee"]:
if u_field in item and item.get(u_field):
user_msg = item[u_field].strip()
break
for a_field in ["reflection", "response", "output", "counselor_response", "counselor"]:
if a_field in item and item.get(a_field):
assistant_msg = item[a_field].strip()
break
if user_msg and assistant_msg:
conversations.append({
"messages": [
{"role": "user", "content": user_msg},
{"role": "assistant", "content": assistant_msg}
]
})
logger.info(f"✓ Loaded {len(conversations)} Peer Counseling Reflections conversations")
return conversations
except Exception as e:
logger.warning(f"Failed to load Peer Counseling Reflections dataset: {e}")
return []
def load_dolly_dataset() -> List[Dict]:
"""Load databricks-dolly-15k dataset (instruction-following) - ALL relevant samples."""
logger.info(f"Loading Dolly instruction dataset...")
try:
dataset = load_dataset("databricks/databricks-dolly-15k", split="train")
logger.info(f" Dataset has {len(dataset)} samples available")
# Filter for relevant categories (brainstorming, open_qa, creative_writing)
relevant_categories = {"brainstorming", "open_qa", "creative_writing", "general_qa"}
conversations = []
for item in dataset:
if item.get("category", "") in relevant_categories:
instruction = item.get("instruction", "").strip()
context = item.get("context", "").strip()
response = item.get("response", "").strip()
# Combine instruction and context if both exist
user_message = f"{instruction}\n\n{context}" if context else instruction
if user_message and response:
conversations.append({
"messages": [
{"role": "user", "content": user_message},
{"role": "assistant", "content": response}
]
})
logger.info(f"✓ Loaded {len(conversations)} Dolly instruction conversations (filtered from {len(dataset)} total)")
return conversations
except Exception as e:
logger.warning(f"Failed to load Dolly dataset: {e}")
return []
def load_mentalchat16k() -> List[Dict]:
"""Load ShenLab/MentalChat16K dataset - ALL samples."""
logger.info(f"Loading MentalChat16K dataset...")
try:
dataset = load_dataset("ShenLab/MentalChat16K", split="train")
logger.info(f" Dataset has {len(dataset)} samples available")
conversations = []
for item in dataset:
# Try different possible field names
user_msg = None
assistant_msg = None
# Common field name patterns
for user_field in ["query", "question", "input", "user", "prompt", "instruction"]:
if user_field in item and item.get(user_field):
user_msg = item[user_field].strip()
break
for assistant_field in ["response", "answer", "output", "assistant", "reply"]:
if assistant_field in item and item.get(assistant_field):
assistant_msg = item[assistant_field].strip()
break
if user_msg and assistant_msg:
conversations.append({
"messages": [
{"role": "user", "content": user_msg},
{"role": "assistant", "content": assistant_msg}
]
})
logger.info(f"✓ Loaded {len(conversations)} MentalChat16K conversations")
return conversations
except Exception as e:
logger.warning(f"Failed to load MentalChat16K dataset: {e}")
return []
def load_additional_mental_health_datasets() -> List[Dict]:
"""Load additional mental health datasets - ALL samples."""
logger.info(f"Loading additional mental health datasets...")
all_conversations = []
# List of additional datasets to try
additional_datasets = [
("heliosbrahma/mental_health_chatbot_dataset", ["prompt", "question"], ["response", "answer"]),
("mpingale/mental-health-chat-dataset", ["question", "query"], ["answer", "response"]),
("sauravjoshi23/psychology-dataset", ["input", "question"], ["output", "answer"]),
]
for dataset_name, user_fields, assistant_fields in additional_datasets:
try:
logger.info(f" Loading {dataset_name}...")
dataset = load_dataset(dataset_name, split="train")
logger.info(f" Has {len(dataset)} samples available")
for item in dataset:
# Try different field names
user_msg = None
assistant_msg = None
for field in user_fields:
if field in item and item.get(field):
user_msg = item[field].strip()
break
for field in assistant_fields:
if field in item and item.get(field):
assistant_msg = item[field].strip()
break
if user_msg and assistant_msg:
all_conversations.append({
"messages": [
{"role": "user", "content": user_msg},
{"role": "assistant", "content": assistant_msg}
]
})
logger.info(f" ✓ Loaded {len([c for c in all_conversations if c])} from this dataset")
except Exception as e:
logger.warning(f" Failed: {e}")
continue
logger.info(f"✓ Loaded {len(all_conversations)} additional mental health conversations total")
return all_conversations
def quality_filter_conversation(conv: Dict, min_response_length: int = 50, max_total_length: int = 2048) -> bool:
"""Filter conversation based on quality criteria."""
try:
messages = conv.get("messages", [])
if len(messages) < 2:
return False
# Check response length
assistant_msg = [m for m in messages if m.get("role") == "assistant"]
if not assistant_msg:
return False
response = assistant_msg[0].get("content", "")
if len(response) < min_response_length:
return False
# Check total length
total_length = sum(len(m.get("content", "")) for m in messages)
if total_length > max_total_length:
return False
# Check for empty messages
if any(not m.get("content", "").strip() for m in messages):
return False
return True
except:
return False
def load_mixed_dataset(
total_samples: int = 100000,
cache_file: str = "mixed_lifecoach_dataset_100k.jsonl.gz", # Now compressed by default
use_cache: bool = True
) -> List[Dict]:
"""
Load and mix multiple datasets for comprehensive life coaching training.
Saves compressed cache to save disk space.
Datasets loaded (ALL available samples):
1. Mental Health Counseling (Amod/mental_health_counseling_conversations)
2. CounselChat (nbertagnolli/counsel-chat)
3. CBT Cognitive Distortions (epsilon3/cbt-cognitive-distortions-analysis)
4. Peer Counseling Reflections (emoneil/reflections-in-peer-counseling)
5. MentalChat16K (ShenLab/MentalChat16K)
6. Dolly Instructions (databricks/databricks-dolly-15k - filtered categories)
7-8. Additional mental health datasets (heliosbrahma, mpingale, sauravjoshi23)
"""
cache_path = Path(cache_file)
cache_path_uncompressed = Path(cache_file.replace('.gz', ''))
# Try to load from compressed cache first
if use_cache and cache_path.exists():
logger.info(f"Loading cached dataset from {cache_file} (compressed)...")
try:
conversations = []
with gzip.open(cache_path, 'rt', encoding='utf-8') as f:
for line in f:
conversations.append(json.loads(line.strip()))
logger.info(f"✓ Loaded {len(conversations)} conversations from compressed cache")
return conversations
except Exception as e:
logger.warning(f"Failed to load compressed cache: {e}. Trying uncompressed...")
# Try uncompressed cache (backward compatibility)
if use_cache and cache_path_uncompressed.exists():
logger.info(f"Loading cached dataset from {cache_path_uncompressed} (uncompressed)...")
try:
conversations = []
with open(cache_path_uncompressed, 'r', encoding='utf-8') as f:
for line in f:
conversations.append(json.loads(line.strip()))
logger.info(f"✓ Loaded {len(conversations)} conversations from uncompressed cache")
return conversations
except Exception as e:
logger.warning(f"Failed to load cache: {e}. Rebuilding dataset...")
# Load ALL available samples from each dataset
logger.info("=" * 80)
logger.info(f"LOADING MIXED DATASET (Target: ~{total_samples} samples)")
logger.info("Loading ALL available samples from each dataset")
logger.info("=" * 80)
all_conversations = []
# Load each dataset ONE AT A TIME and clear cache after each
# This saves disk space by not keeping all downloads simultaneously
logger.info("Dataset 1/8: Mental Health Counseling (Amod)")
all_conversations.extend(load_mental_health_counseling())
logger.info(f" Running total: {len(all_conversations)} conversations")
clear_hf_cache()
gc.collect()
# Stop early if we've reached target
if len(all_conversations) >= total_samples:
logger.info(f"✓ Reached target of {total_samples} samples, stopping dataset loading")
else:
logger.info("Dataset 2/8: CounselChat (nbertagnolli)")
all_conversations.extend(load_counsel_chat())
logger.info(f" Running total: {len(all_conversations)} conversations")
clear_hf_cache()
gc.collect()
if len(all_conversations) >= total_samples:
logger.info(f"✓ Reached target of {total_samples} samples, stopping dataset loading")
else:
logger.info("Dataset 3/8: CBT Cognitive Distortions (epsilon3)")
all_conversations.extend(load_cbt_cognitive_distortions())
logger.info(f" Running total: {len(all_conversations)} conversations")
clear_hf_cache()
gc.collect()
if len(all_conversations) >= total_samples:
logger.info(f"✓ Reached target of {total_samples} samples, stopping dataset loading")
else:
logger.info("Dataset 4/8: Peer Counseling Reflections (emoneil)")
all_conversations.extend(load_peer_counseling_reflections())
logger.info(f" Running total: {len(all_conversations)} conversations")
clear_hf_cache()
gc.collect()
if len(all_conversations) >= total_samples:
logger.info(f"✓ Reached target of {total_samples} samples, stopping dataset loading")
else:
logger.info("Dataset 5/8: MentalChat16K (ShenLab)")
all_conversations.extend(load_mentalchat16k())
logger.info(f" Running total: {len(all_conversations)} conversations")
clear_hf_cache()
gc.collect()
if len(all_conversations) >= total_samples:
logger.info(f"✓ Reached target of {total_samples} samples, stopping dataset loading")
else:
logger.info("Dataset 6/8: Dolly Instructions (databricks)")
all_conversations.extend(load_dolly_dataset())
logger.info(f" Running total: {len(all_conversations)} conversations")
clear_hf_cache()
gc.collect()
if len(all_conversations) >= total_samples:
logger.info(f"✓ Reached target of {total_samples} samples, stopping dataset loading")
else:
logger.info("Datasets 7-8: Additional Mental Health Datasets")
all_conversations.extend(load_additional_mental_health_datasets())
logger.info(f" Running total: {len(all_conversations)} conversations")
clear_hf_cache()
gc.collect()
logger.info("=" * 80)
logger.info(f"Total conversations loaded: {len(all_conversations)}")
# Apply quality filtering
logger.info("Applying quality filters...")
filtered_conversations = [conv for conv in all_conversations if quality_filter_conversation(conv)]
logger.info(f"✓ After filtering: {len(filtered_conversations)} conversations")
# Shuffle to mix datasets
random.shuffle(filtered_conversations)
# Trim to target size
if len(filtered_conversations) > total_samples:
filtered_conversations = filtered_conversations[:total_samples]
logger.info(f"Final dataset size: {len(filtered_conversations)} conversations")
# Save compressed cache to save disk space
if use_cache:
logger.info(f"Saving compressed cache to {cache_file}...")
try:
with gzip.open(cache_path, 'wt', encoding='utf-8') as f:
for conv in filtered_conversations:
f.write(json.dumps(conv, ensure_ascii=False) + '\n')
# Get file sizes for comparison
compressed_size_mb = cache_path.stat().st_size / (1024 * 1024)
logger.info(f"✓ Compressed cache saved successfully ({compressed_size_mb:.1f} MB)")
except Exception as e:
logger.warning(f"Failed to save compressed cache: {e}")
logger.info("=" * 80)
return filtered_conversations
class LifeCoachModel:
"""Life coaching assistant using Phi-4 model."""
def __init__(
self,
model_name: str = "microsoft/Phi-4",
model_save_path: str = "/data/life_coach_model",
train_file: str = "cbt_life_coach_improved_50000.jsonl",
max_length: int = 2048
):
"""
Initialize the Life Coach model.
Args:
model_name: Hugging Face model identifier
model_save_path: Path to save/load fine-tuned model
train_file: Path to training data file (JSONL format)
max_length: Maximum sequence length for training
"""
self.model_name = model_name
# Check if /data is writable, otherwise use local directory
save_path = Path(model_save_path)
if str(save_path).startswith("/data"):
try:
Path("/data").mkdir(parents=True, exist_ok=True)
# Test write permissions
test_file = Path("/data/.test_write")
test_file.touch()
test_file.unlink()
self.model_save_path = save_path
logger.info(f"Using /data directory for model storage: {save_path}")
except (PermissionError, OSError) as e:
# Fall back to local directory
local_path = Path("./data/life_coach_model")
logger.warning(f"/data directory not writable ({e}), using local directory: {local_path}")
self.model_save_path = local_path
else:
self.model_save_path = save_path
self.train_file = Path(train_file)
self.max_length = max_length
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
logger.info(f"Device: {self.device}")
logger.info(f"Model: {model_name}")
logger.info(f"Save path: {self.model_save_path}")
logger.info(f"Training file: {self.train_file}")
self.tokenizer = None
self.model = None
def load_tokenizer(self):
"""Carica il tokenizer da /data/hf_cache (persistente) o scaricalo una volta."""
logger.info("Loading tokenizer...")
cache_dir = "/data/hf_cache"
os.makedirs(cache_dir, exist_ok=True)
try:
self.tokenizer = AutoTokenizer.from_pretrained(
self.model_name,
cache_dir=cache_dir,
local_files_only=False, # Permette download solo se non esiste
trust_remote_code=True,
use_fast=True
)
logger.info(f"Tokenizer caricato (cache: {cache_dir})")
except Exception as e:
logger.error(f"Errore critico nel caricamento tokenizer: {e}")
raise
def load_model(self, fine_tuned=True):
"""Load the fine-tuned model with safe settings for HF Spaces."""
logger.info(f"Loading {'fine-tuned' if fine_tuned else 'base'} model from {self.model_save_path}")
# Forza impostazioni sicure
import torch
from transformers import AutoModelForCausalLM
from peft import PeftModel
base_model_name = self.model_name
# Carica modello base con device_map e offload
base_model = AutoModelForCausalLM.from_pretrained(
base_model_name,
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True,
low_cpu_mem_usage=True,
offload_folder="/tmp/offload", # Usa /tmp per offload
cache_dir="/data/hf_cache"
)
if fine_tuned:
logger.info(f"Loading adapter from {self.model_save_path}")
self.model = PeftModel.from_pretrained(
base_model,
self.model_save_path,
device_map="auto",
offload_folder="/tmp/offload",
torch_dtype=torch.float16
)
else:
self.model = base_model
self.model.eval()
logger.info("Model loaded successfully!")
def load_training_data(self, num_samples: Optional[int] = None) -> Dataset:
"""
Load training data from mixed datasets or JSONL file.
Args:
num_samples: Number of samples to load (None for 100,000 default)
Returns:
Dataset object
"""
# Try to load from mixed datasets first (new method)
# If train_file doesn't exist or is the old one, use mixed datasets
use_mixed_datasets = True
if self.train_file.exists():
# Check if it's the old single dataset file
if "cbt_life_coach" in str(self.train_file):
logger.info("Found old training file. Using new mixed datasets instead...")
use_mixed_datasets = True
else:
# It might be a cached mixed dataset
logger.info(f"Found training file at {self.train_file}")
use_mixed_datasets = False
if use_mixed_datasets:
# Load mixed datasets from Hugging Face
logger.info("Loading mixed datasets from Hugging Face...")
if num_samples is None:
num_samples = 100000 # Default to 100k samples
# Load mixed dataset (will use cache if available)
cache_file = f"mixed_lifecoach_dataset_{num_samples}.jsonl.gz" # Compressed format
data = load_mixed_dataset(
total_samples=num_samples,
cache_file=cache_file,
use_cache=True
)
else:
# Fall back to loading from JSONL file
logger.info(f"Loading training data from {self.train_file}")
data = []
with open(self.train_file, 'r', encoding='utf-8') as f:
for i, line in enumerate(f):
if num_samples and i >= num_samples:
break
try:
data.append(json.loads(line.strip()))
except json.JSONDecodeError:
logger.warning(f"Skipping invalid JSON at line {i+1}")
logger.info(f"Loaded {len(data)} training examples")
# Convert to Hugging Face Dataset
dataset = Dataset.from_list(data)
# Preprocess for Phi-4 format
logger.info("Preprocessing data for Phi-4 format...")
dataset = dataset.map(
self._preprocess_function,
batched=True,
remove_columns=dataset.column_names,
desc="Tokenizing"
)
return dataset
def _preprocess_function(self, examples):
"""
Preprocess data into Phi-4 chat format.
Phi-4 uses:
<|system|>
{system message}<|end|>
<|user|>
{user message}<|end|>
<|assistant|>
{assistant response}<|end|>
"""
texts = []
# Handle both 'conversations' (our format) and 'messages' (standard format)
conversations_key = 'conversations' if 'conversations' in examples else 'messages'
for conversation in examples[conversations_key]:
text = ""
for message in conversation:
# Handle both 'from'/'value' and 'role'/'content' formats
if 'from' in message:
role = message['from']
content = message['value']
else:
role = message['role']
content = message['content']
# Convert to Phi-4 format
if role == 'system':
text += f"<|system|>\n{content}<|end|>\n"
elif role == 'user':
text += f"<|user|>\n{content}<|end|>\n"
elif role == 'assistant':
text += f"<|assistant|>\n{content}<|end|>\n"
texts.append(text)
# Tokenize with dynamic padding (like quantum server)
# Don't pad here - let DataCollatorForSeq2Seq handle it dynamically per batch
model_inputs = self.tokenizer(
texts,
max_length=self.max_length,
truncation=True,
padding=False, # Dynamic padding - saves massive memory!
return_tensors=None # Don't convert to tensors yet
)
# Set labels (for causal language modeling, labels = input_ids)
# Note: .copy() instead of .clone() since we're not using tensors yet
model_inputs["labels"] = model_inputs["input_ids"].copy()
return model_inputs
def setup_lora(self):
"""Setup LoRA (Low-Rank Adaptation) for efficient fine-tuning."""
logger.info("Setting up LoRA adapters...")
# Prepare model for k-bit training (critical for load_in_8bit=True)
logger.info("Preparing model for 8-bit training...")
self.model = prepare_model_for_kbit_training(self.model)
# Enable gradient checkpointing to save GPU memory
# This reduces memory usage by 20-30 GB with minimal performance impact
if hasattr(self.model, 'gradient_checkpointing_enable'):
self.model.gradient_checkpointing_enable()
logger.info("✓ Gradient checkpointing enabled (saves 20-30 GB GPU memory)")
# LoRA configuration
lora_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
r=16, # Rank
lora_alpha=32,
lora_dropout=0.1,
bias="none",
target_modules=["q_proj", "k_proj", "v_proj", "o_proj"] # Attention layers
)
# Apply LoRA
self.model = get_peft_model(self.model, lora_config)
# Print trainable parameters
trainable_params = sum(p.numel() for p in self.model.parameters() if p.requires_grad)
total_params = sum(p.numel() for p in self.model.parameters())
logger.info(f"Trainable parameters: {trainable_params:,} / {total_params:,} "
f"({100 * trainable_params / total_params:.2f}%)")
def fine_tune(
self,
num_samples: Optional[int] = 5000,
epochs: int = 3,
batch_size: int = 8,
learning_rate: float = 5e-5,
gradient_accumulation_steps: int = 2
):
"""
Fine-tune the model on life coaching data.
Args:
num_samples: Number of training samples (None for all)
epochs: Number of training epochs
batch_size: Training batch size
learning_rate: Learning rate
gradient_accumulation_steps: Gradient accumulation steps (for memory efficiency)
"""
logger.info("=" * 80)
logger.info("STARTING FINE-TUNING")
logger.info("=" * 80)
# Load data
dataset = self.load_training_data(num_samples)
# Setup LoRA
self.setup_lora()
# Training arguments
training_args = TrainingArguments(
output_dir="./training_output",
num_train_epochs=epochs,
per_device_train_batch_size=batch_size,
gradient_accumulation_steps=gradient_accumulation_steps,
learning_rate=learning_rate,
fp16=True, # Mixed precision training
logging_steps=10,
save_strategy="epoch",
save_total_limit=2,
warmup_steps=100,
weight_decay=0.01,
report_to="none", # Disable wandb/tensorboard
)
# Data collator
data_collator = DataCollatorForSeq2Seq(
tokenizer=self.tokenizer,
model=self.model,
padding=True
)
# Trainer
trainer = Trainer(
model=self.model,
args=training_args,
train_dataset=dataset,
data_collator=data_collator,
)
# Train
logger.info("Training started...")
trainer.train()
logger.info("=" * 80)
logger.info("TRAINING COMPLETED")
logger.info("=" * 80)
# Save model
self.save_model()
def save_model(self):
"""Save the fine-tuned model to disk."""
logger.info(f"Saving model to {self.model_save_path}")
self.model_save_path.mkdir(parents=True, exist_ok=True)
# Save model and tokenizer
self.model.save_pretrained(str(self.model_save_path))
self.tokenizer.save_pretrained(str(self.model_save_path))
logger.info("Model saved successfully")
def generate_response(self, prompt: str, max_new_tokens: int = 128, conversation_history: list = None) -> str:
"""
Generate a response to a user prompt.
Args:
prompt: User's input message
max_new_tokens: Maximum tokens to generate
conversation_history: List of previous messages for context
Returns:
Generated response
"""
# Build full conversation context with system prompt
formatted_prompt = ""
# Add system prompt to guide the model's behavior
system_prompt = """You are Robert, a friendly and experienced life coach. Here's your background:
About You:
- Name: Robert (Bob to friends)
- Age: 42 years old
- Experience: 15 years as a certified life coach and motivational speaker
- Education: Master's degree in Psychology from UC Berkeley
- Specialties: Personal growth, career transitions, work-life balance, goal setting, stress management
- Personal: Married with two kids, enjoy hiking and meditation in your free time
- Approach: Warm, empathetic, practical, and solution-focused
Your Coaching Style:
- Respond ONLY to what the user actually tells you - never make assumptions about their problems
- Start conversations in a welcoming, open manner
- Ask clarifying questions to understand their situation better
- Provide practical, actionable advice based on what they share
- Be encouraging and positive, but also honest and realistic
- Keep responses concise and focused (2-4 sentences usually)
- Share brief personal insights when relevant, but keep the focus on the client
Important: Never assume clients have problems they haven't mentioned. Let them guide the conversation and share what's on their mind."""
formatted_prompt += f"<|system|>\n{system_prompt}<|end|>\n"
# Add conversation history if provided
if conversation_history:
for msg in conversation_history:
if msg["role"] == "user":
formatted_prompt += f"<|user|>\n{msg['content']}<|end|>\n"
elif msg["role"] == "assistant":
formatted_prompt += f"<|assistant|>\n{msg['content']}<|end|>\n"
# Add current prompt
formatted_prompt += f"<|user|>\n{prompt}<|end|>\n<|assistant|>\n"
# DEBUG: Print the full prompt being sent to the model
logger.info("=" * 80)
logger.info("FULL PROMPT SENT TO MODEL:")
logger.info(formatted_prompt)
logger.info("=" * 80)
# Tokenize
inputs = self.tokenizer(
formatted_prompt,
return_tensors="pt",
truncation=True,
max_length=self.max_length
).to(self.device)
# Get input length to extract only new tokens
input_length = inputs['input_ids'].shape[1]
# Get the token ID for <|end|> to use as a stopping token
end_token_id = self.tokenizer.convert_tokens_to_ids("<|end|>")
# Build list of EOS token IDs (stop generation at <|end|> or EOS)
eos_token_ids = [self.tokenizer.eos_token_id]
if end_token_id is not None and end_token_id != self.tokenizer.unk_token_id:
eos_token_ids.append(end_token_id)
# Generate
with torch.no_grad():
outputs = self.model.generate(
**inputs,
max_new_tokens=max_new_tokens,
temperature=0.7, # Balanced - coherent but still creative
top_p=0.9, # Standard setting for focused responses
top_k=50, # Add top-k sampling
do_sample=True,
pad_token_id=self.tokenizer.pad_token_id,
eos_token_id=eos_token_ids, # Stop at <|end|> or EOS
repetition_penalty=1.15 # Stronger penalty to prevent repetition
)
# Decode ONLY the newly generated tokens (not the input)
generated_tokens = outputs[0][input_length:]
# Decode without skipping special tokens first to find the end marker
response_with_tokens = self.tokenizer.decode(generated_tokens, skip_special_tokens=False)
# Extract only up to the first <|end|> token (model may generate multi-turn conversations)
if "<|end|>" in response_with_tokens:
response_text = response_with_tokens.split("<|end|>")[0]
else:
response_text = response_with_tokens
# Clean up any remaining special tokens
response_text = response_text.replace("<|assistant|>", "").replace("<|user|>", "").replace("<|system|>", "")
# Remove any remaining special tokens using the tokenizer
response_text = response_text.strip()
return response_text
def interactive_chat(self):
"""Start an interactive chat session."""
logger.info("=" * 80)
logger.info("LIFE COACH V1 - Interactive Chat Session")
logger.info("=" * 80)
print("\nWelcome to Life Coach v1!")
print("I'm here to help you with life coaching, goal setting, motivation, and personal growth.")
print("\nCommands:")
print(" - Type your question or concern to get coaching advice")
print(" - Type 'quit' or 'exit' to end the session")
print(" - Type 'clear' to clear conversation history")
print("=" * 80)
print()
conversation_history = []
while True:
try:
# Get user input
user_input = input("\n🧑 You: ").strip()
if not user_input:
continue
# Check for exit commands
if user_input.lower() in ['quit', 'exit', 'q']:
print("\n👋 Thank you for using Life Coach v1. Take care!")
break
# Check for clear command
if user_input.lower() == 'clear':
conversation_history = []
print("✅ Conversation history cleared.")
continue
# Generate response with conversation context
print("\n🤖 Life Coach: ", end="", flush=True)
response = self.generate_response(user_input, conversation_history=conversation_history)
print(response)
# Update conversation history
conversation_history.append({
"role": "user",
"content": user_input
})
conversation_history.append({
"role": "assistant",
"content": response
})
except KeyboardInterrupt:
print("\n\n👋 Session interrupted. Goodbye!")
break
except Exception as e:
logger.error(f"Error during chat: {e}")
print(f"\n❌ Error: {e}")
def main():
"""Main entry point."""
parser = argparse.ArgumentParser(
description="Life Coach v1 - Phi-4 based life coaching assistant"
)
parser.add_argument(
"--mode",
type=str,
choices=["train", "chat", "both"],
default="both",
help="Mode: train (fine-tune only), chat (chat only), both (train then chat)"
)
parser.add_argument(
"--model-name",
type=str,
default="microsoft/Phi-4",
help="Hugging Face model name"
)
parser.add_argument(
"--model-path",
type=str,
default="/data/life_coach_model",
help="Path to save/load fine-tuned model"
)
parser.add_argument(
"--train-file",
type=str,
default="cbt_life_coach_improved_50000.jsonl",
help="Path to training data file (JSONL format)"
)
parser.add_argument(
"--num-samples",
type=int,
default=-1,
help="Number of training samples (default: -1 for all 100,000 from mixed datasets)"
)
parser.add_argument(
"--epochs",
type=int,
default=3,
help="Number of training epochs"
)
parser.add_argument(
"--batch-size",
type=int,
default=4,
help="Training batch size (default: 4 for memory safety)"
)
parser.add_argument(
"--learning-rate",
type=float,
default=5e-5,
help="Learning rate (default: 5e-5, matching quantum server)"
)
parser.add_argument(
"--gradient-accumulation",
type=int,
default=4,
help="Gradient accumulation steps (default: 4, effective batch=16)"
)
parser.add_argument(
"--force-retrain",
action="store_true",
help="Force retraining even if fine-tuned model exists"
)
args = parser.parse_args()
# Clean up GPU memory before starting
cleanup_gpu_memory()
# Initialize model
coach = LifeCoachModel(
model_name=args.model_name,
model_save_path=args.model_path,
train_file=args.train_file
)
# Load tokenizer
coach.load_tokenizer()
# Check if fine-tuned model already exists
model_exists = coach.model_save_path.exists() and (coach.model_save_path / "adapter_model.safetensors").exists()
# Training mode
if args.mode in ["train", "both"]:
# Check if we should skip training
if model_exists and not args.force_retrain:
logger.info("=" * 80)
logger.info("FINE-TUNED MODEL ALREADY EXISTS")
logger.info("=" * 80)
logger.info(f"Found existing model at: {coach.model_save_path}")
logger.info("Skipping training. Loading existing model...")
logger.info("(Use --force-retrain to retrain from scratch)")
logger.info("=" * 80)
# Load the existing fine-tuned model
coach.load_model(fine_tuned=True)
else:
if args.force_retrain and model_exists:
logger.info("=" * 80)
logger.info("FORCING RETRAINING (--force-retrain flag set)")
logger.info("=" * 80)
# Load base model for training
coach.load_model(fine_tuned=False)
# Fine-tune
num_samples = None if args.num_samples == -1 else args.num_samples
coach.fine_tune(
num_samples=num_samples,
epochs=args.epochs,
batch_size=args.batch_size,
learning_rate=args.learning_rate,
gradient_accumulation_steps=args.gradient_accumulation
)
# For "both" mode, reload the fine-tuned model for chat
if args.mode == "both":
logger.info("Reloading fine-tuned model for chat...")
coach.load_model(fine_tuned=True)
# If only training mode, exit
if args.mode == "train":
logger.info("Training complete. Use --mode chat to start chatting.")
return
# Chat mode
elif args.mode == "chat":
if not model_exists:
logger.error("=" * 80)
logger.error("ERROR: No fine-tuned model found!")
logger.error("=" * 80)
logger.error(f"Expected location: {coach.model_save_path}")
logger.error("Please train the model first using:")
logger.error(" python3 life_coach_v1.py --mode train")
logger.error("=" * 80)
return
# Load fine-tuned model
logger.info(f"Loading fine-tuned model from {coach.model_save_path}")
coach.load_model(fine_tuned=True)
# Start interactive chat
coach.interactive_chat()
if __name__ == "__main__":
main()