manan-ml-api / app.py
CodeGovindz
Initial commit: Manan ML API for emotion detection
6deff13
raw
history blame
19.7 kB
import os
import tempfile
import logging
import numpy as np
import torch
import torch.nn as nn
import whisper
import librosa
import asyncio
from typing import List, Dict, Any, Optional
from fastapi import FastAPI, UploadFile, File, HTTPException, Request, Form
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse
from PIL import Image
from torchvision import transforms
from transformers import DistilBertTokenizerFast, DistilBertForSequenceClassification
from speechbrain.inference.classifiers import EncoderClassifier
import torchaudio
import json
# Setup logging
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s [%(levelname)s] %(message)s",
)
logger = logging.getLogger(__name__)
class ModelManager:
"""Centralized model management for all ML models."""
_instance = None
def __new__(cls):
if cls._instance is None:
cls._instance = super(ModelManager, cls).__new__(cls)
cls._instance._initialized = False
return cls._instance
def __init__(self):
if self._initialized:
return
self._initialized = True
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
logger.info(f"Using device: {self.device}")
self.emotion_model = None
self.whisper_model = None
self.text_tokenizer = None
self.text_model = None
self.speechbrain_model = None
# Model paths
self.MODEL_PATHS = {
'whisper_model': 'base',
'text_model': 'emotion-distilbert-model',
'speechbrain_model': 'speechbrain/emotion-recognition-wav2vec2-IEMOCAP'
}
# Constants
self.EMOTIONS = ["Angry", "Disgust", "Fear", "Happy", "Sad", "Surprise", "Neutral"]
self.SAMPLE_RATE = 16000
self.TEXT_EMOTIONS = ["sadness", "joy", "love", "anger", "fear", "surprise"]
# SpeechBrain emotion mapping
self.SPEECHBRAIN_EMOTION_MAP = {
'neu': 'Neutral',
'hap': 'Happy',
'sad': 'Sad',
'ang': 'Angry',
'fea': 'Fear',
'dis': 'Disgust',
'sur': 'Surprise'
}
def load_all_models(self):
"""Load all required models."""
try:
logger.info("Starting to load all models...")
self._load_emotion_model()
self._load_whisper_model()
self._load_text_models()
self._load_speechbrain_model()
logger.info("All models loaded successfully!")
return True
except Exception as e:
logger.error(f"Error loading models: {str(e)}")
raise
def _load_emotion_model(self):
"""Use DeepFace for emotion recognition."""
try:
logger.info("Loading DeepFace for emotion recognition...")
from deepface import DeepFace
self.emotion_model = DeepFace
logger.info("DeepFace loaded successfully")
except Exception as e:
logger.error(f"Failed to initialize DeepFace: {str(e)}")
raise
def _load_whisper_model(self):
"""Load the Whisper speech-to-text model."""
try:
logger.info("Loading Whisper model...")
self.whisper_model = whisper.load_model(self.MODEL_PATHS['whisper_model'])
logger.info("Whisper model loaded successfully")
except Exception as e:
logger.error(f"Failed to load Whisper model: {str(e)}")
raise
def _load_text_models(self):
"""Load the text emotion classification model and tokenizer."""
try:
logger.info("Loading text emotion model...")
model_path = self.MODEL_PATHS['text_model']
# Try to load from local path first, then from HuggingFace Hub
if os.path.exists(model_path):
self.text_tokenizer = DistilBertTokenizerFast.from_pretrained(model_path)
self.text_model = DistilBertForSequenceClassification.from_pretrained(model_path)
else:
# Use a public emotion model from HuggingFace
logger.info("Local model not found, using HuggingFace model...")
self.text_tokenizer = DistilBertTokenizerFast.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion")
self.text_model = DistilBertForSequenceClassification.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion")
self.text_model.eval()
logger.info("Text models loaded successfully")
except Exception as e:
logger.error(f"Failed to load text models: {str(e)}")
raise
def _load_speechbrain_model(self):
"""Load SpeechBrain emotion recognition model."""
try:
logger.info("Loading SpeechBrain emotion recognition model...")
self.speechbrain_model = EncoderClassifier.from_hparams(
source=self.MODEL_PATHS['speechbrain_model'],
savedir="pretrained_models/emotion-recognition-wav2vec2-IEMOCAP",
run_opts={"device": "cpu"}
)
logger.info("SpeechBrain emotion recognition model loaded successfully")
except Exception as e:
logger.error(f"Failed to load SpeechBrain model: {str(e)}")
raise
def get_emotion_model(self):
if self.emotion_model is None:
self._load_emotion_model()
return self.emotion_model
def get_whisper_model(self):
if self.whisper_model is None:
self._load_whisper_model()
return self.whisper_model
def get_text_models(self):
if self.text_model is None or self.text_tokenizer is None:
self._load_text_models()
return self.text_tokenizer, self.text_model
def get_speechbrain_model(self):
if self.speechbrain_model is None:
self._load_speechbrain_model()
return self.speechbrain_model
# Initialize FastAPI app
app = FastAPI(title="Manan ML API - Emotion Recognition")
# CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
expose_headers=["*"]
)
# Initialize model manager
model_manager = ModelManager()
# Image transformation pipeline
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
@app.on_event("startup")
async def startup_event():
"""Initialize all models when the application starts."""
try:
logger.info("Starting model initialization...")
model_manager.load_all_models()
logger.info("All models initialized successfully!")
except Exception as e:
logger.error(f"Failed to initialize models: {str(e)}")
# Don't raise - let the app start and load models on demand
@app.get("/")
async def root():
"""Health check endpoint."""
return {
"status": "running",
"message": "Manan ML API is running!",
"endpoints": [
"/pred_face - Face emotion prediction",
"/predict_audio_batch - Voice emotion prediction",
"/predict_text/ - Text emotion prediction"
]
}
@app.get("/health")
async def health_check():
"""Health check endpoint."""
return {"status": "healthy", "device": str(model_manager.device)}
# Helper function for SpeechBrain prediction
def predict_emotion_speechbrain(audio_path: str) -> Dict[str, Any]:
"""Predict emotion from audio using SpeechBrain."""
try:
speechbrain_model = model_manager.get_speechbrain_model()
signal, sr = torchaudio.load(audio_path)
if sr != 16000:
resampler = torchaudio.transforms.Resample(sr, 16000)
signal = resampler(signal)
if signal.dim() == 1:
signal = signal.unsqueeze(0)
elif signal.dim() == 3:
signal = signal.squeeze(1)
device = next(speechbrain_model.mods.wav2vec2.parameters()).device
signal = signal.to(device)
with torch.no_grad():
feats = speechbrain_model.mods.wav2vec2(signal)
pooled = speechbrain_model.mods.avg_pool(feats)
out = speechbrain_model.mods.output_mlp(pooled)
out_prob = speechbrain_model.hparams.softmax(out)
score, index = torch.max(out_prob, dim=-1)
predicted_emotion = speechbrain_model.hparams.label_encoder.decode_ndim(index.cpu())
if isinstance(predicted_emotion, list):
if isinstance(predicted_emotion[0], list):
emotion_key = str(predicted_emotion[0][0]).lower()[:3]
else:
emotion_key = str(predicted_emotion[0]).lower()[:3]
else:
emotion_key = str(predicted_emotion).lower()[:3]
emotion = model_manager.SPEECHBRAIN_EMOTION_MAP.get(emotion_key, 'Neutral')
probs = out_prob[0].detach().cpu().numpy()
if probs.ndim > 1:
probs = probs.flatten()
all_emotions = speechbrain_model.hparams.label_encoder.decode_ndim(
torch.arange(len(probs))
)
prob_dict = {}
for i in range(len(probs)):
if i < len(all_emotions):
if isinstance(all_emotions[i], list):
key = str(all_emotions[i][0]).lower()[:3]
else:
key = str(all_emotions[i]).lower()[:3]
emotion_name = model_manager.SPEECHBRAIN_EMOTION_MAP.get(key, f'emotion_{i}')
prob_dict[emotion_name] = float(probs[i])
confidence = float(score[0])
return {
'emotion': emotion,
'confidence': confidence,
'probabilities': prob_dict
}
except Exception as e:
logger.error(f"Error predicting emotion with SpeechBrain: {str(e)}")
raise
def transcribe_audio(audio_path: str) -> str:
"""Transcribe audio to text using Whisper."""
try:
result = model_manager.whisper_model.transcribe(audio_path)
return result["text"].strip()
except Exception as e:
logger.error(f"Error in audio transcription: {str(e)}")
return ""
# ============== API ENDPOINTS ==============
@app.post("/pred_face")
async def predict_face_emotion(
files: List[UploadFile] = File(...),
questions: str = Form(None)
):
"""Predict emotions from face images using DeepFace."""
from deepface import DeepFace
logger.info(f"Received {len(files)} files for face prediction")
if not files:
raise HTTPException(status_code=400, detail="No files provided")
temp_files = []
try:
questions_data = {}
question_count = 0
if questions:
try:
questions_data = json.loads(questions)
question_count = len(questions_data)
except json.JSONDecodeError:
raise HTTPException(status_code=400, detail="Invalid questions JSON format.")
else:
question_count = 3
questions_data = {str(i): {"text": f"Question {i+1}", "imageCount": 1} for i in range(question_count)}
question_files = {str(i): [] for i in range(question_count)}
for file in files:
if '_' in file.filename and file.filename.startswith('q'):
try:
q_idx = file.filename.split('_')[0][1:]
if q_idx in question_files:
question_files[q_idx].append(file)
except Exception as e:
logger.warning(f"Skipping file {file.filename}: {e}")
results = []
for q_idx, q_files in question_files.items():
if not q_files:
results.append({
"emotion": "Unknown",
"probabilities": {e: 0.0 for e in model_manager.EMOTIONS}
})
continue
probs_list = []
for file in q_files:
try:
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as tmp:
content = await file.read()
tmp.write(content)
temp_path = tmp.name
temp_files.append(temp_path)
analysis = DeepFace.analyze(
img_path=temp_path,
actions=['emotion'],
enforce_detection=False,
silent=True
)
if isinstance(analysis, list):
analysis = analysis[0]
emotion_scores = analysis.get('emotion', {})
dominant_emotion = analysis.get('dominant_emotion', 'neutral')
normalized_probs = {}
for emo in model_manager.EMOTIONS:
key = emo.lower()
normalized_probs[emo] = emotion_scores.get(key, 0.0) / 100.0
probs_list.append(normalized_probs)
except Exception as e:
logger.error(f"Error processing {file.filename}: {e}")
if probs_list:
avg_probs = {}
for emo in model_manager.EMOTIONS:
avg_probs[emo] = sum(p.get(emo, 0) for p in probs_list) / len(probs_list)
dominant_emotion = max(avg_probs, key=avg_probs.get)
results.append({
"emotion": dominant_emotion,
"probabilities": avg_probs
})
else:
results.append({
"emotion": "Unknown",
"probabilities": {e: 0.0 for e in model_manager.EMOTIONS}
})
return results
except Exception as e:
logger.error(f"Error in face emotion prediction: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
finally:
for file_path in temp_files:
try:
if os.path.exists(file_path):
os.remove(file_path)
except Exception as e:
logger.warning(f"Failed to delete temp file {file_path}: {e}")
@app.post("/predict_audio_batch")
async def predict_audio_batch(files: List[UploadFile] = File(...)):
"""Predict emotions from multiple audio files using SpeechBrain."""
logger.info(f"Received {len(files)} audio files for prediction")
if not files:
raise HTTPException(status_code=400, detail="No audio files provided")
temp_files = []
results = []
try:
for file in files:
try:
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp:
content = await file.read()
tmp.write(content)
temp_path = tmp.name
temp_files.append(temp_path)
prediction = predict_emotion_speechbrain(temp_path)
results.append(prediction)
logger.info(f"Predicted emotion for {file.filename}: {prediction['emotion']}")
except Exception as e:
logger.error(f"Error processing {file.filename}: {e}")
results.append({
'emotion': 'Unknown',
'confidence': 0.0,
'probabilities': {},
'error': str(e)
})
return {'status': 'success', 'results': results}
except Exception as e:
logger.error(f"Error in audio batch prediction: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
finally:
for file_path in temp_files:
try:
if os.path.exists(file_path):
os.remove(file_path)
except Exception as e:
logger.warning(f"Failed to delete temp file {file_path}: {e}")
@app.post("/predict_text/")
async def predict_text_emotion(files: List[UploadFile] = File(...)):
"""Transcribe audio and predict text emotion."""
logger.info(f"Received {len(files)} audio files for text prediction")
if not files:
raise HTTPException(status_code=400, detail="No audio files provided")
temp_files = []
results = []
try:
tokenizer, text_model = model_manager.get_text_models()
whisper_model = model_manager.get_whisper_model()
for file in files:
try:
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp:
content = await file.read()
tmp.write(content)
temp_path = tmp.name
temp_files.append(temp_path)
# Transcribe
transcription = whisper_model.transcribe(temp_path)
transcript = transcription["text"].strip()
logger.info(f"Transcribed: {transcript}")
if not transcript:
results.append({
'transcript': '',
'emotion': 'neutral',
'confidence': 0.0,
'probabilities': {}
})
continue
# Predict emotion from text
inputs = tokenizer(
transcript,
return_tensors="pt",
truncation=True,
max_length=128,
padding=True
)
with torch.no_grad():
outputs = text_model(**inputs)
probs = torch.softmax(outputs.logits, dim=1)[0]
# Get emotion labels
emotion_labels = model_manager.TEXT_EMOTIONS
if hasattr(text_model.config, 'id2label'):
emotion_labels = [text_model.config.id2label[i] for i in range(len(probs))]
prob_dict = {emotion_labels[i]: float(probs[i]) for i in range(len(probs))}
predicted_idx = torch.argmax(probs).item()
predicted_emotion = emotion_labels[predicted_idx]
confidence = float(probs[predicted_idx])
results.append({
'transcript': transcript,
'emotion': predicted_emotion,
'confidence': confidence,
'probabilities': prob_dict
})
except Exception as e:
logger.error(f"Error processing {file.filename}: {e}")
results.append({
'transcript': '',
'emotion': 'unknown',
'confidence': 0.0,
'error': str(e)
})
return results
except Exception as e:
logger.error(f"Error in text prediction: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
finally:
for file_path in temp_files:
try:
if os.path.exists(file_path):
os.remove(file_path)
except Exception as e:
logger.warning(f"Failed to delete temp file {file_path}: {e}")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)