Acfoley / app.py
learnmlf's picture
Convert interface to English and optimize audio performance
dd2db22
import gradio as gr
import torch
import torchaudio
import logging
import tempfile
import os
import sys
from pathlib import Path
import numpy as np
from typing import Optional, Tuple
import time
import traceback
# Add hf_AC to path
current_dir = Path(__file__).parent
hf_ac_path = current_dir / "hf_AC"
if hf_ac_path.exists():
sys.path.insert(0, str(hf_ac_path))
# Configuration for HF Space
EXAMPLE_PROMPTS = [
"Crackling fireplace with gentle flames",
"Ocean waves crashing on rocky shore",
"Forest ambience with bird songs",
"Keyboard typing sounds",
"Footsteps on wooden floor",
"Rain on metal roof"
]
USAGE_TIPS = """
### ๐Ÿ’ก Usage Tips
**Basic Settings:**
- **Video Quality**: Use clear, well-lit videos, recommended 1-15 seconds
- **Reference Audio**: Provide clear audio clips as timbre reference
- **CFG Strength**: Between 1-8, higher values follow description more closely
**Advanced Features:**
- **mask_away_clip**: Enable when video content differs significantly from desired audio
- **Fine-grained Control**: Use reference audio for precise timbre and style control
- **Zero-shot Generation**: Generate novel sound combinations without training
**Application Scenarios:**
- Film post-production audio
- Game sound effect creation
- Music composition assistance
- Sound design experimentation
"""
# Check and install missing dependencies
def check_dependencies():
"""Check if all required packages are available"""
missing_packages = []
required_packages = [
'torch', 'torchaudio', 'numpy', 'scipy', 'librosa',
'torchdiffeq', 'einops', 'hydra', 'tensordict', 'av'
]
for package in required_packages:
try:
if package == 'hydra':
__import__('hydra')
elif package == 'av':
__import__('av')
else:
__import__(package)
except ImportError:
missing_packages.append(package)
return missing_packages
# Import hf_AC modules with error handling
try:
# First check basic dependencies
missing_deps = check_dependencies()
if missing_deps:
print(f"Warning: Missing dependencies: {missing_deps}")
print("Some dependencies may be installing in the background...")
from hf_AC.mmaudio.eval_utils import (ModelConfig, all_model_cfg, generate, load_video,
setup_eval_logging)
from hf_AC.mmaudio.model.flow_matching import FlowMatching
from hf_AC.mmaudio.model.networks import MMAudio, get_my_mmaudio
from hf_AC.mmaudio.model.utils.features_utils import FeaturesUtils
from hf_AC.inf import Audio
# Setup logging
setup_eval_logging()
log = logging.getLogger()
HF_AC_AVAILABLE = True
print("โœ… hf_AC modules loaded successfully!")
except ImportError as e:
print(f"Warning: hf_AC modules not available: {e}")
print("This may be due to missing dependencies. Please wait for installation to complete.")
log = logging.getLogger()
HF_AC_AVAILABLE = False
class AudioFoleyModel:
def __init__(self):
self.device = 'cpu'
if torch.cuda.is_available():
self.device = 'cuda'
elif torch.backends.mps.is_available():
self.device = 'mps'
self.dtype = torch.bfloat16
self.model = None
self.net = None
self.fm = None
self.feature_utils = None
def load_model(self, variant='large_44k', model_path=None):
"""Load the hf_AC model with progress updates"""
global model_loading_status
try:
if not HF_AC_AVAILABLE:
return "โŒ hf_AC modules not available. Please install the hf_AC package."
if variant not in all_model_cfg:
available_variants = list(all_model_cfg.keys()) if all_model_cfg else []
return f"โŒ Unknown model variant: {variant}. Available: {available_variants}"
# Step 1: Initialize model config
model_loading_status = "๐Ÿ”ง Initializing model configuration..."
log.info(f"Loading model variant: {variant}")
self.model: ModelConfig = all_model_cfg[variant]
# Step 2: Download model components
model_loading_status = "๐Ÿ“ฅ Downloading model components..."
try:
self.model.download_if_needed()
except Exception as e:
log.warning(f"Could not download model components: {e}")
# Step 3: Download main model weights
model_loading_status = "๐Ÿ“ฅ Downloading main model weights..."
if not hasattr(self.model, 'model_path') or not self.model.model_path or not Path(self.model.model_path).exists():
try:
from huggingface_hub import hf_hub_download
log.info("Downloading main model weights from HuggingFace...")
# Create weights directory
weights_dir = Path("weights")
weights_dir.mkdir(exist_ok=True)
# Download model.pth from HuggingFace
model_file = hf_hub_download(
repo_id="FF2416/AC-Foley",
filename="model.pth",
local_dir=str(weights_dir),
local_dir_use_symlinks=False
)
self.model.model_path = Path(model_file)
log.info(f"โœ… Downloaded model weights to {model_file}")
except Exception as e:
log.warning(f"Could not download main model weights: {e}")
log.info("Will proceed with available components only")
# Set custom model path if provided
if model_path and os.path.exists(model_path):
self.model.model_path = Path(model_path)
log.info(f"Using custom model path: {model_path}")
# Step 4: Load neural network
model_loading_status = "๐Ÿง  Loading neural network..."
self.net: MMAudio = get_my_mmaudio(self.model.model_name).to(self.device, self.dtype).eval()
# Step 5: Load weights
model_loading_status = "โš–๏ธ Loading model weights..."
if hasattr(self.model, 'model_path') and self.model.model_path and Path(self.model.model_path).exists():
try:
weights = torch.load(self.model.model_path, map_location=self.device, weights_only=True)
self.net.load_weights(weights['weights'])
log.info(f'โœ… Loaded weights from {self.model.model_path}')
except Exception as e:
log.error(f"Failed to load weights: {e}")
model_loading_status = f"โŒ Failed to load model weights: {e}"
return model_loading_status
else:
log.warning('โš ๏ธ No model weights found, using default initialization')
model_loading_status = "โš ๏ธ ๆจกๅž‹็ป„ไปถๅทฒๅŠ ่ฝฝ๏ผŒไฝ†ไธปๆƒ้‡ไธๅฏ็”จใ€‚ๆŸไบ›ๅŠŸ่ƒฝๅฏ่ƒฝๅ—้™ใ€‚"
return model_loading_status
# Step 6: Initialize flow matching
model_loading_status = "๐ŸŒŠ Initializing flow matching..."
self.fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=25)
# Step 7: Initialize feature utils
model_loading_status = "๐Ÿ”ง Initializing feature utilities..."
try:
self.feature_utils = FeaturesUtils(
tod_vae_ckpt=self.model.vae_path,
synchformer_ckpt=self.model.synchformer_ckpt,
enable_conditions=True,
mode=self.model.mode,
bigvgan_vocoder_ckpt=self.model.bigvgan_16k_path,
need_vae_encoder=True
)
self.feature_utils = self.feature_utils.to(self.device, self.dtype).eval()
except Exception as e:
log.error(f"Failed to initialize feature utils: {e}")
model_loading_status = f"โŒ Failed to initialize feature utilities: {e}"
return model_loading_status
# Step 8: Complete
model_loading_status = "โœ… Model loaded successfully! Ready to generate audio."
return model_loading_status
except Exception as e:
error_msg = f"โŒ Model loading error: {str(e)}"
log.error(error_msg)
model_loading_status = error_msg
return error_msg
def generate_audio(self, video_file, prompt: str, negative_prompt: str = "",
duration: float = 8.0, cfg_strength: float = 4.5,
seed: int = 42, reference_audio: str = None, mask_away_clip: bool = False) -> Tuple[Optional[str], str]:
"""Generate audio from video and text prompt"""
try:
# Validation checks
if not HF_AC_AVAILABLE:
return None, "โŒ hf_AC modules not available."
if self.net is None or self.feature_utils is None:
return None, "โŒ Model not loaded. Please load the model first."
if video_file is None:
return None, "โŒ Please upload a video file."
log.info(f'๐ŸŽฌ Processing video: {video_file}')
if prompt.strip():
log.info(f'๐Ÿ“ Prompt: "{prompt}"')
else:
log.info('๐Ÿ“ No prompt provided - will generate based on video content')
if reference_audio:
log.info(f'๐ŸŽต Reference audio: {reference_audio}')
# Load and process reference audio if provided
reference_audio_tensor = None
if reference_audio and os.path.exists(reference_audio):
try:
# Use the same Audio class from hf_AC
SAMPLE_RATE = 44100
audio_processor = Audio([reference_audio], SAMPLE_RATE)
audio_list = audio_processor.load_audio()
if audio_list:
reference_audio_tensor = audio_list[0]
log.info(f'๐ŸŽต Reference audio loaded: {reference_audio_tensor.shape}')
except Exception as e:
log.warning(f"Failed to load reference audio: {e}")
reference_audio_tensor = None
# Load and process video
try:
video_path = Path(video_file)
if not video_path.exists():
return None, f"โŒ Video file not found: {video_file}"
video_info = load_video(video_path, duration)
clip_frames = video_info.clip_frames
sync_frames = video_info.sync_frames
duration_sec = video_info.duration_sec
log.info(f'๐Ÿ“น Video loaded: {duration_sec:.2f}s duration')
except Exception as e:
return None, f"โŒ Failed to load video: {str(e)}"
# Prepare frames
if mask_away_clip:
clip_frames = None # Mask away clip frames when video and audio don't match well
log.info("๐ŸŽญ Using mask_away_clip: ignoring visual features")
else:
clip_frames = clip_frames.unsqueeze(0) if clip_frames is not None else None
sync_frames = sync_frames.unsqueeze(0)
# Update model sequence configuration
try:
self.model.seq_cfg.duration = duration_sec
# Set audio sample count based on reference audio or default
if reference_audio_tensor is not None:
self.model.seq_cfg.audio_num_sample = reference_audio_tensor.shape[0]
else:
self.model.seq_cfg.audio_num_sample = 89088 # Default for 44kHz
self.net.update_seq_lengths(
self.model.seq_cfg.latent_seq_len,
self.model.seq_cfg.clip_seq_len,
self.model.seq_cfg.sync_seq_len,
self.model.seq_cfg.audio_seq_len
)
except Exception as e:
return None, f"โŒ Failed to configure model: {str(e)}"
# Generate audio
try:
log.info('๐ŸŽต Generating audio...')
start_time = time.time()
with torch.inference_mode():
audios = generate(
clip_frames,
sync_frames,
[prompt],
reference_audio_tensor, # Use reference audio if provided
negative_text=[negative_prompt] if negative_prompt.strip() else None,
feature_utils=self.feature_utils,
net=self.net,
fm=self.fm,
rng=torch.Generator(device=self.device).manual_seed(seed),
cfg_strength=cfg_strength
)
generation_time = time.time() - start_time
log.info(f'โฑ๏ธ Generation completed in {generation_time:.2f}s')
except Exception as e:
return None, f"โŒ Audio generation failed: {str(e)}"
# Save generated audio
try:
audio = audios.float().cpu()[0]
# Create output filename with timestamp
timestamp = int(time.time())
output_filename = f"generated_audio_{timestamp}.wav"
permanent_path = f"/tmp/{output_filename}"
# Save audio file with fallback methods
try:
# Try with torchaudio first
torchaudio.save(permanent_path, audio, self.model.seq_cfg.sampling_rate)
except Exception as e:
log.warning(f"torchaudio.save failed: {e}, trying alternative method...")
try:
# Fallback: use soundfile if available
import soundfile as sf
sf.write(permanent_path, audio.numpy().T, self.model.seq_cfg.sampling_rate)
except ImportError:
try:
# Fallback: use scipy.io.wavfile
from scipy.io.wavfile import write
# Convert to int16 for wav format
audio_int16 = (audio * 32767).clamp(-32768, 32767).to(torch.int16)
write(permanent_path, self.model.seq_cfg.sampling_rate, audio_int16.numpy().T)
except Exception as e2:
return None, f"โŒ Audio saving failed: {str(e2)}"
# Verify file was created
if not os.path.exists(permanent_path):
return None, "โŒ Failed to save audio file"
file_size = os.path.getsize(permanent_path) / 1024 # KB
success_msg = f"โœ… Audio generated successfully!\n"
success_msg += f"๐Ÿ“Š Duration: {duration_sec:.2f}s | "
success_msg += f"Size: {file_size:.1f}KB | "
success_msg += f"Generation time: {generation_time:.2f}s"
return permanent_path, success_msg
except Exception as e:
return None, f"โŒ Failed to save audio: {str(e)}"
except Exception as e:
error_msg = f"โŒ Unexpected error: {str(e)}\n{traceback.format_exc()}"
log.error(error_msg)
return None, error_msg
# Global model instance - initialized once
audio_model = None
model_loading_status = "Not initialized"
def initialize_model():
"""Initialize model once at startup"""
global audio_model, model_loading_status
if audio_model is None:
try:
model_loading_status = "Initializing model..."
audio_model = AudioFoleyModel()
load_result = audio_model.load_model()
model_loading_status = load_result
return load_result
except Exception as e:
model_loading_status = f"โŒ Model initialization failed: {str(e)}"
return model_loading_status
else:
return "โœ… Model already loaded"
def generate_audio_interface(video_file, audio_file, prompt, duration, cfg_strength, mask_away_clip):
"""Interface function for generating audio"""
global audio_model, model_loading_status
# Check if model is loaded
if audio_model is None or audio_model.net is None:
return None, "โŒ Model not loaded. Please wait for initialization to complete or refresh the page."
# Use fixed seed for consistency in HF Space
seed = 42
negative_prompt = "" # Simplified interface
audio_path, message = audio_model.generate_audio(
video_file, prompt, negative_prompt, duration, cfg_strength, seed, audio_file, mask_away_clip
)
return audio_path, message
def get_model_status():
"""Get current model loading status"""
global model_loading_status
return model_loading_status
# Create Gradio interface
with gr.Blocks(title="hf_AC Audio Foley Generator", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# ๐ŸŽต AC-Foley: Reference-Audio-Guided Video-to-Audio Synthesis
## ๐Ÿ“– About
AC-Foley is a reference-audio-guided video-to-audio synthesis model that enables precise fine-grained sound synthesis. Unlike traditional text-dependent methods, AC-Foley directly leverages reference audio to achieve precise control over generated sounds, addressing the ambiguity of textual descriptions in micro-acoustic features.
## โœจ Key Features
- **Fine-grained Sound Synthesis**: Generate footsteps with distinct timbres (wood, marble, gravel, etc.)
- **Timbre Transfer**: Transform violin melodies into bright, piercing suona tones
- **Zero-shot Generation**: Create unique sound effects without specialized training
- **Visual-Audio Alignment**: Automatically generate matching audio from video content
*Based on paper: [AC-Foley: Reference-Audio-Guided Video-to-Audio Synthesis with Acoustic Transfer](https://openreview.net/forum?id=URPXhnWdBF)*
""")
# Model status display - will be updated automatically
model_status = gr.Textbox(
label="Model Status",
value=model_loading_status,
interactive=False
)
# Add a refresh button for status
refresh_status_btn = gr.Button("๐Ÿ”„ Refresh Status", size="sm")
refresh_status_btn.click(
fn=get_model_status,
outputs=model_status
)
with gr.Row():
with gr.Column(scale=2):
# Required inputs
gr.Markdown("### ๐Ÿ“น Required Input")
video_input = gr.Video(
label="Video File - Upload video for audio generation",
format="mp4"
)
# Optional inputs
gr.Markdown("### ๐ŸŽ›๏ธ Optional Inputs")
audio_input = gr.Audio(
label="Reference Audio - Provide timbre, style, rhythm reference (fine-grained control)",
type="filepath",
sources=["upload"],
format="wav"
)
prompt_input = gr.Textbox(
label="Text Prompt - Describe desired audio type (leave empty for auto-generation from video)",
placeholder="e.g., 'footsteps', 'metal clang', 'bird chirping'",
lines=2
)
# Advanced options
with gr.Accordion("๐Ÿ”ง Advanced Options", open=False):
with gr.Row():
duration_slider = gr.Slider(
minimum=1.0,
maximum=15.0,
value=8.0,
step=0.5,
label="Duration (seconds)"
)
cfg_strength_slider = gr.Slider(
minimum=1.0,
maximum=8.0,
value=4.5,
step=0.1,
label="CFG Strength"
)
mask_away_clip = gr.Checkbox(
label="Ignore Visual Features (mask_away_clip) - Enable when video and reference audio differ significantly",
value=False
)
with gr.Column(scale=1):
# Usage guide
gr.Markdown("### ๐Ÿ“‹ Usage Guide")
gr.Markdown("""
**Four Generation Modes:**
1๏ธโƒฃ **Video Only**: Upload video only
- Auto-generate audio from visual content
2๏ธโƒฃ **Video + Reference Audio**: Upload video + audio
- Use reference audio's timbre and style
- Achieve fine-grained timbre control
3๏ธโƒฃ **Video + Text**: Upload video + text
- Generate specified audio type from text description
4๏ธโƒฃ **Complete Mode**: Video + Audio + Text
- Most precise control method
- Combine visual, timbral, and semantic guidance
""")
# Example prompts
gr.Markdown("### ๐ŸŽฏ Example Prompts")
example_buttons = []
for prompt in EXAMPLE_PROMPTS[:4]:
btn = gr.Button(prompt, size="sm")
example_buttons.append(btn)
btn.click(
fn=lambda p=prompt: p,
outputs=prompt_input
)
# Generate button
generate_btn = gr.Button("๐ŸŽต Generate Audio", variant="primary", size="lg")
# Output area
gr.Markdown("### ๐ŸŽง Generated Results")
audio_output = gr.Audio(
label="Generated Audio",
type="filepath",
format="wav",
autoplay=False
)
generation_status = gr.Textbox(
label="Generation Status",
interactive=False,
lines=2
)
# ็ป‘ๅฎš็”Ÿๆˆไบ‹ไปถ
generate_btn.click(
fn=generate_audio_interface,
inputs=[
video_input, audio_input, prompt_input,
duration_slider, cfg_strength_slider, mask_away_clip
],
outputs=[audio_output, generation_status]
)
with gr.Accordion("๐Ÿ’ก Detailed Information", open=False):
gr.Markdown(USAGE_TIPS)
gr.Markdown("""
### ๐ŸŽฌ Application Examples
**Fine-grained Sound Synthesis:**
- "Footsteps on wooden floor" + reference audio โ†’ Specific timbre footsteps
- "Metal collision" + different reference audio โ†’ Iron vs. copper distinction
**Timbre Transfer:**
- Piano melody video + violin reference audio โ†’ Violin playing same melody
- Human humming + instrument reference โ†’ Instrumental version
**Creative Sound Effects:**
- Sci-fi scene video + real sound reference โ†’ Unique sci-fi effects
- Animation video + real sound effects โ†’ Cartoon-reality hybrid effects
### ๐Ÿ“š Technical Details
- Model based on diffusion models and audio conditioning mechanisms
- Supports 44.1kHz high-quality audio generation
- Achieves visual-audio-text multimodal alignment
""")
# Auto-initialize model on startup
demo.load(
fn=initialize_model,
outputs=[model_status]
)
# Initialize model when module is imported (for HF Space)
if HF_AC_AVAILABLE:
print("๐Ÿš€ Starting model initialization...")
initialize_model()
print(f"๐Ÿ“Š Model status: {model_loading_status}")
if __name__ == "__main__":
# HF Space will handle the server configuration
demo.launch()