lucid-hf's picture
CI: deploy Docker/PDM Space
98a3af2 verified
#!/usr/bin/env python3
"""
Utility functions for pseudolabeling workflow
"""
import json
import argparse
from pathlib import Path
import numpy as np
from typing import Dict, List
import matplotlib.pyplot as plt
from collections import defaultdict
def load_pseudolabels(json_path: str) -> Dict:
"""Load pseudolabeled annotations"""
with open(json_path, 'r') as f:
return json.load(f)
def calculate_statistics(data: Dict) -> Dict:
"""Calculate statistics from pseudolabeled data"""
stats = {
'total_images': len(data['images']),
'total_annotations': len(data['annotations']),
'original_annotations': 0,
'pseudolabeled_annotations': 0,
'verified_annotations': 0,
'confidence_scores': [],
'images_with_annotations': 0,
'images_with_pseudolabels': 0,
'avg_annotations_per_image': 0
}
# Count annotations per image
img_ann_count = defaultdict(int)
img_pseudo_count = defaultdict(int)
for ann in data['annotations']:
# Check if pseudolabel
is_pseudo = ann.get('is_pseudolabel', False)
if is_pseudo:
stats['pseudolabeled_annotations'] += 1
img_pseudo_count[ann['image_id']] += 1
if 'confidence' in ann:
stats['confidence_scores'].append(ann['confidence'])
else:
stats['original_annotations'] += 1
if ann.get('verified', False):
stats['verified_annotations'] += 1
img_ann_count[ann['image_id']] += 1
stats['images_with_annotations'] = len(img_ann_count)
stats['images_with_pseudolabels'] = len(img_pseudo_count)
if stats['images_with_annotations'] > 0:
stats['avg_annotations_per_image'] = sum(img_ann_count.values()) / stats['images_with_annotations']
return stats
def sort_images_by_similarity(progress_file: str, annotations_file: str) -> List:
"""Sort images by their similarity scores"""
# Load progress file
with open(progress_file, 'r') as f:
progress = json.load(f)
# Load annotations
with open(annotations_file, 'r') as f:
data = json.load(f)
# Calculate similarity scores for each image
image_scores = []
for img in data['images']:
img_id = img['id']
# Get annotations for this image
img_anns = [ann for ann in data['annotations'] if ann['image_id'] == img_id]
# Separate by source
original = [ann for ann in img_anns if ann.get('source') == 'original']
predicted = [ann for ann in img_anns if ann.get('source') == 'predicted']
# Calculate a simple similarity metric
if original and predicted:
# Ratio of predicted to original
ratio = len(predicted) / len(original)
# Average score of predictions
avg_score = np.mean([ann.get('score', 0) for ann in predicted])
# Combined metric
similarity = avg_score * min(ratio, 2.0) / 2.0
else:
similarity = 0.0
image_scores.append({
'image_id': img_id,
'file_name': img['file_name'],
'similarity': similarity,
'n_original': len(original),
'n_predicted': len(predicted),
'processed': img_id in progress.get('processed_images', [])
})
# Sort by similarity
image_scores.sort(key=lambda x: x['similarity'], reverse=True)
return image_scores
def merge_annotations(original_file: str, pseudolabel_file: str, output_file: str,
keep_original: bool = True, min_score: float = 0.3):
"""Merge original and pseudolabeled annotations"""
# Load files
with open(original_file, 'r') as f:
original = json.load(f)
with open(pseudolabel_file, 'r') as f:
pseudo = json.load(f)
# Create merged data
merged = {
'info': original.get('info', pseudo.get('info', {})),
'licenses': original.get('licenses', pseudo.get('licenses', [])),
'categories': original.get('categories', pseudo.get('categories', [])),
'images': [],
'annotations': []
}
# Get all unique images
image_ids = set()
image_map = {}
for img in original['images'] + pseudo['images']:
if img['id'] not in image_ids:
image_ids.add(img['id'])
image_map[img['id']] = img
merged['images'].append(img)
# Merge annotations
if keep_original:
# Keep all original annotations
for ann in original['annotations']:
ann['source'] = 'original'
merged['annotations'].append(ann)
# Add pseudolabeled annotations
for ann in pseudo['annotations']:
# Skip if it's an original annotation and we're keeping originals
if keep_original and ann.get('source') == 'original':
continue
# Filter by score
if ann.get('score', 1.0) >= min_score:
merged['annotations'].append(ann)
# Save merged file
with open(output_file, 'w') as f:
json.dump(merged, f, indent=2)
print(f"Merged annotations saved to {output_file}")
print(f"Total images: {len(merged['images'])}")
print(f"Total annotations: {len(merged['annotations'])}")
def visualize_statistics(stats: Dict, output_path: str = None):
"""Create visualization of pseudolabeling statistics"""
fig, axes = plt.subplots(2, 2, figsize=(12, 8))
# Annotations by source
ax = axes[0, 0]
sources = list(stats['annotations_by_source'].keys())
counts = list(stats['annotations_by_source'].values())
ax.bar(sources, counts)
ax.set_title('Annotations by Source')
ax.set_xlabel('Source')
ax.set_ylabel('Count')
# Score distribution
ax = axes[0, 1]
for source, scores in stats['scores_by_source'].items():
if scores and source == 'predicted':
ax.hist(scores, bins=20, alpha=0.7, label=source)
ax.set_title('Score Distribution (Predicted)')
ax.set_xlabel('Score')
ax.set_ylabel('Count')
ax.legend()
# Summary stats
ax = axes[1, 0]
ax.axis('off')
summary_text = f"""
Summary Statistics:
Total Images: {stats['total_images']}
Images with Annotations: {stats['images_with_annotations']}
Total Annotations: {stats['total_annotations']}
Avg Annotations/Image: {stats['avg_annotations_per_image']:.2f}
Original Annotations: {stats['annotations_by_source'].get('original', 0)}
Predicted Annotations: {stats['annotations_by_source'].get('predicted', 0)}
"""
ax.text(0.1, 0.5, summary_text, fontsize=12, verticalalignment='center')
# Pie chart of sources
ax = axes[1, 1]
if counts:
ax.pie(counts, labels=sources, autopct='%1.1f%%')
ax.set_title('Annotation Sources')
plt.tight_layout()
if output_path:
plt.savefig(output_path)
print(f"Statistics plot saved to {output_path}")
else:
plt.show()
def export_for_training(pseudolabel_file: str, output_dir: str,
train_ratio: float = 0.8, min_annotations: int = 1):
"""Export pseudolabeled data in training format"""
output_dir = Path(output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
# Load data
with open(pseudolabel_file, 'r') as f:
data = json.load(f)
# Filter images with minimum annotations
img_ann_count = defaultdict(int)
for ann in data['annotations']:
img_ann_count[ann['image_id']] += 1
valid_images = [img for img in data['images']
if img_ann_count[img['id']] >= min_annotations]
# Split into train/val
n_train = int(len(valid_images) * train_ratio)
np.random.shuffle(valid_images)
train_images = valid_images[:n_train]
val_images = valid_images[n_train:]
train_img_ids = {img['id'] for img in train_images}
val_img_ids = {img['id'] for img in val_images}
# Create train and val datasets
train_data = {
'info': data.get('info', {}),
'licenses': data.get('licenses', []),
'categories': data.get('categories', []),
'images': train_images,
'annotations': [ann for ann in data['annotations']
if ann['image_id'] in train_img_ids]
}
val_data = {
'info': data.get('info', {}),
'licenses': data.get('licenses', []),
'categories': data.get('categories', []),
'images': val_images,
'annotations': [ann for ann in data['annotations']
if ann['image_id'] in val_img_ids]
}
# Save files
with open(output_dir / 'train_pseudo.json', 'w') as f:
json.dump(train_data, f, indent=2)
with open(output_dir / 'val_pseudo.json', 'w') as f:
json.dump(val_data, f, indent=2)
print(f"Training data exported to {output_dir}")
print(f"Train: {len(train_images)} images, {len(train_data['annotations'])} annotations")
print(f"Val: {len(val_images)} images, {len(val_data['annotations'])} annotations")
def main():
parser = argparse.ArgumentParser(description="Pseudolabeling utilities")
subparsers = parser.add_subparsers(dest='command', help='Command to run')
# Stats command
stats_parser = subparsers.add_parser('stats', help='Calculate statistics')
stats_parser.add_argument('--input', required=True, help='Pseudolabeled JSON file')
stats_parser.add_argument('--plot', help='Output path for statistics plot')
# Sort command
sort_parser = subparsers.add_parser('sort', help='Sort images by similarity')
sort_parser.add_argument('--progress', required=True, help='Progress JSON file')
sort_parser.add_argument('--annotations', required=True, help='Annotations JSON file')
sort_parser.add_argument('--output', help='Output file for sorted list')
# Merge command
merge_parser = subparsers.add_parser('merge', help='Merge annotations')
merge_parser.add_argument('--original', required=True, help='Original annotations')
merge_parser.add_argument('--pseudo', required=True, help='Pseudolabeled annotations')
merge_parser.add_argument('--output', required=True, help='Output file')
merge_parser.add_argument('--min-score', type=float, default=0.3, help='Minimum score')
merge_parser.add_argument('--no-original', action='store_true', help='Don\'t keep original')
# Export command
export_parser = subparsers.add_parser('export', help='Export for training')
export_parser.add_argument('--input', required=True, help='Pseudolabeled JSON file')
export_parser.add_argument('--output', required=True, help='Output directory')
export_parser.add_argument('--train-ratio', type=float, default=0.8, help='Train split ratio')
export_parser.add_argument('--min-anns', type=int, default=1, help='Min annotations per image')
args = parser.parse_args()
if args.command == 'stats':
data = load_pseudolabels(args.input)
stats = calculate_statistics(data)
print("\nPseudolabeling Statistics:")
print("-" * 40)
for key, value in stats.items():
if isinstance(value, dict):
print(f"{key}:")
for k, v in value.items():
if isinstance(v, list):
print(f" {k}: {len(v)} items")
else:
print(f" {k}: {v}")
else:
print(f"{key}: {value}")
if args.plot:
visualize_statistics(stats, args.plot)
elif args.command == 'sort':
sorted_images = sort_images_by_similarity(args.progress, args.annotations)
print("\nTop 10 images by similarity:")
print("-" * 60)
for i, img in enumerate(sorted_images[:10]):
print(f"{i+1}. {img['file_name']}: "
f"similarity={img['similarity']:.3f}, "
f"original={img['n_original']}, "
f"predicted={img['n_predicted']}, "
f"processed={img['processed']}")
if args.output:
with open(args.output, 'w') as f:
json.dump(sorted_images, f, indent=2)
print(f"\nSorted list saved to {args.output}")
elif args.command == 'merge':
merge_annotations(
args.original,
args.pseudo,
args.output,
keep_original=not args.no_original,
min_score=args.min_score
)
elif args.command == 'export':
export_for_training(
args.input,
args.output,
train_ratio=args.train_ratio,
min_annotations=args.min_anns
)
else:
parser.print_help()
if __name__ == "__main__":
main()