republic8's picture
update README
ce8e1e1
metadata
title: Limit Order Matching Microstructure
emoji: πŸ“ˆ
colorFrom: pink
colorTo: indigo
sdk: static
pinned: false

Limit-Order-Matching-Microstructure

Paper: https://arxiv.org/abs/2511.20606
Code: https://github.com/Republic1024/Limit-Order-Matching-Microstructure

Unifying Matching Markets and Limit Order Books through Microstructure Dynamics

Code Release for: Limit Order Book Dynamics in Matching Markets: Microstructure, Spread, and Execution Slippage

simulation_results.png

πŸ“Œ Overview

This repository contains the full simulation code, experiments, and visualization pipeline for the paper:

β€œLimit Order Book Dynamics in Matching Markets: Microstructure, Spread, and Execution Slippage”
arXiv: https://arxiv.org/abs/2511.20606

The project proposes a unified framework where matching markets (e.g., marriage, partner choice, labor matching) are modeled as limit order books, with:

  • Intrinsic value β†’ ask
  • Reachability constraint β†’ bid-depth / liquidity drought
  • Ξ”V gap β†’ structural spread
  • Compensation C β†’ imperfect price improvement
  • Slippage (regret) β†’ execution shortfall
  • Settling β†’ threshold-decay crossing event

The framework shows that linear compensation cannot close structural preference gaps, unless it triggers a categorical identity shift (Identity Collapse Threshold).


πŸ” Core Concepts

1. Unconditional vs. Reachable Maximum

  • V_uncond_max: Best perceived partner that exists in the population.
  • V_reach_max: Best partner currently reachable under social liquidity constraints.
  • Ξ”V = V_uncond_max - V_reach_max:
    β†’ The structural preference gap, analogous to a bid-ask spread.

2. Theorem 1 β€” Compensation Clipping & Identity Collapse

If compensation utility is:


h(C) = min(Ξ΅C, C_max)

Then:

  • If Ξ΅C < C_max β†’ Compensation is ineffective: Ξ”V persists
  • If Ξ΅C β‰₯ C_max β†’ Identity Collapse: category shift occurs

This mirrors slippage-bounded execution in microstructure.

3. Threshold Dynamics (Settling)

Commitment occurs when:


ΞΈ = U_effective / V_uncond_max β‰₯ T(t)

Where T(t) is a decaying liquidity threshold (similar to urgency-driven execution).


πŸ“ Repository Structure


Limit-Order-Matching-Microstructure/
β”‚
β”œβ”€β”€ exp1-5.py               # Main experiments (Sections 4.2–4.6)
β”œβ”€β”€ exp1-5-Chinese.py       # Chinese commented version
β”œβ”€β”€ simulation_results.png  # Fig 5 replication
β”œβ”€β”€ simulation_results2.png # Slippage + Clipping + Settling plots
β”œβ”€β”€ data/                   # (Empty / Ignored) placeholder for datasets
β”œβ”€β”€ img1.jpg                # Paper figure assets
β”œβ”€β”€ img2.jpg
β”œβ”€β”€ img3.jpg
β”œβ”€β”€ .gitignore
└── README.md

πŸ“Š Experiments Included (Sections 4.2–4.6)

Experiment 1 β€” Compensation Failure

Shows why compensation cannot close Ξ”V under clipping.

Experiment 2 β€” Settling Dynamics

Implements the threshold-decay commitment model.

Experiment 3 β€” Instant Commitment

High-tier reachable candidate β†’ immediate match.

Experiment 4 β€” Regional Differences

Despite different compensation norms (Jiangsu vs Guangdong),
ranking is invariant β†’ structural gaps dominate.

Experiment 5 β€” Regret Prediction

Shock to V_uncond_max yields post-match ΞΈ decline β†’ slippage regret.


🎨 Visualization

generate_academic_plots() reproduces Figures:

  • Settling curve T(t) vs ΞΈ
  • Compensation utility clipping (Theorem 1)
  • Structural slippage bars

Outputs:


simulation_results2.png

▢️ How to Run

1. Install dependencies


pip install numpy pandas matplotlib

2. Run the experiments


python exp1-5.py

3. Generate visualizations

(automatically triggered at the end)


πŸ“š Citation

If you use this framework, please cite:


Wu, Y. (2025). Limit Order Book Dynamics in Matching Markets:
Microstructure, Spread, and Execution Slippage.
arXiv:2511.20606.

🧠 Philosophy Behind the Model (Short)

This project formalizes a fundamental principle:

Compensation cannot close structural gaps.
Only identity shifts can.

This emerges naturally from the microstructure mapping between
Ξ”V β†’ spread,
C β†’ bounded price improvement,
and slippage β†’ structural regret.