Fanar-1-9B-Instruct — GGUF quantized

This repo contains multiple GGUF builds of the Arabic-English LLM Fanar-1-9B-Instruct, the instruction-tuned variant of Fanar-1-9B created by QCRI / HBKU. The base model is a 9 B-parameter continuation of gemma-2-9b trained on ≈1 T Arabic + English tokens and aligned through SFT → DPO (4.5 M / 250 K pairs). License remains Apache-2.0 and the context window is 4 096 tokens. :contentReference[oaicite:0]{index=0}


Available files

Bits Format Size (≈)
Q2_K 2-bit 3.4 GB
Q3_K_M 3-bit 4.4 GB
Q4_0 / Q4_K_M 4-bit 5.1 GB / 5.4 GB
Q5_0 / Q5_K_M 5-bit 6.1 GB / 6.3 GB
Q6_K 6-bit 8 GB*
Q8_0 8-bit 9.3 GB
F16 / F32 16 / 32-bit 17.6 GB

*value shown on the HF page is a placeholder.


Quick start (llama.cpp ≥ 0.2)

git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make -j
./main -m Fanar-1-9B-Instruct.Q4_K_M.gguf -p "ما هي عاصمة قطر؟"

Python (llama-cpp-python)

from llama_cpp import Llama
llm = Llama(
    model_path="Fanar-1-9B-Instruct.Q4_K_M.gguf",
    n_ctx=4096,
    chat_format="gemma"   # Fanar follows Gemma chat template
)
print(llm.create_chat_completion(
    messages=[{"role":"user","content":"Translate 'peace' to Arabic"}]
).choices[0].message.content)

Credits & notes

  • Original model: QCRI/Fanar-1-9B-Instruct (please consult its model card for training data, evaluation results and limitations). (Hugging Face)
  • This repository only supplies GGUF conversions for efficient local inference on CPU/GPU; no weights were changed.
  • Use responsibly—outputs may be inaccurate, biased, or culturally sensitive.
Downloads last month
59
GGUF
Model size
9B params
Architecture
gemma2
Hardware compatibility
Log In to view the estimation

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

16-bit

32-bit

Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for yasserrmd/Fanar-1-9B-Instruct-gguf

Base model

QCRI/Fanar-1-9B
Quantized
(5)
this model