|
|
from tensorflow.keras.models import load_model |
|
|
import tensorflow as tf |
|
|
from tensorflow.keras.saving import register_keras_serializable |
|
|
from tensorflow.keras import layers, models, backend as K |
|
|
|
|
|
@register_keras_serializable() |
|
|
class SSTAmplifier(tf.keras.layers.Layer): |
|
|
def __init__(self, threshold=28.0, scale=0.1, **kwargs): |
|
|
super().__init__(**kwargs) |
|
|
self.threshold = threshold |
|
|
self.scale = scale |
|
|
|
|
|
def call(self, inputs): |
|
|
sst = inputs[:, 0] |
|
|
factor = tf.sigmoid((sst - self.threshold) * self.scale) |
|
|
mod = 1.0 + 0.3 * factor |
|
|
return tf.expand_dims(mod, -1) |
|
|
|
|
|
@register_keras_serializable() |
|
|
class ShearSuppressor(tf.keras.layers.Layer): |
|
|
def __init__(self, threshold=14.0, scale=0.2, **kwargs): |
|
|
super().__init__(**kwargs) |
|
|
self.threshold = threshold |
|
|
self.scale = scale |
|
|
|
|
|
def call(self, inputs): |
|
|
shear = inputs[:, 3] |
|
|
suppress = tf.sigmoid((self.threshold - shear) * self.scale) |
|
|
mod = 1.0 - 0.25 * suppress |
|
|
return tf.expand_dims(mod, -1) |
|
|
|
|
|
@register_keras_serializable() |
|
|
class VorticityActivator(tf.keras.layers.Layer): |
|
|
def __init__(self, threshold=1.2, scale=1.0, **kwargs): |
|
|
super().__init__(**kwargs) |
|
|
self.threshold = threshold |
|
|
self.scale = scale |
|
|
|
|
|
def call(self, inputs): |
|
|
vort = inputs[:, 4] |
|
|
activate = tf.sigmoid((vort - self.threshold) * self.scale) |
|
|
mod = 1.0 + 0.2 * activate |
|
|
return tf.expand_dims(mod, -1) |
|
|
|
|
|
@register_keras_serializable() |
|
|
class ModulationMixer(tf.keras.layers.Layer): |
|
|
def call(self, inputs): |
|
|
sst_mod, shear_mod, vort_mod = inputs |
|
|
product = sst_mod * shear_mod * vort_mod |
|
|
smooth = 1.0 + 0.25 * tf.tanh(product - 1.0) |
|
|
return smooth |
|
|
|
|
|
CUSTOM_OBJECTS = { |
|
|
'ModulationMixer': ModulationMixer, |
|
|
'VorticityActivator': VorticityActivator, |
|
|
'ShearSuppressor': ShearSuppressor, |
|
|
'SSTAmplifier': SSTAmplifier |
|
|
} |