Spaces:
Sleeping
title: Benchmark Environment Server
emoji: πΉοΈ
colorFrom: purple
colorTo: blue
sdk: docker
pinned: false
app_port: 8000
base_path: /web
tags:
- openenv
Benchmark Environment
A test environment for benchmarking infrastructure and concurrency. Actions specify how many seconds to wait (sleep), making it ideal for testing parallel execution and server scaling. Returns server identity information to verify which instance handled each request.
Quick Start
The simplest way to use the Benchmark environment is through the BenchmarkEnv class:
from benchmark import BenchmarkAction, BenchmarkEnv
try:
# Create environment from Docker image
benchmarkenv = BenchmarkEnv.from_docker_image("benchmark-env:latest")
# Reset - get server identity
result = benchmarkenv.reset()
print(f"Host URL: {result.observation.host_url}")
print(f"PID: {result.observation.pid}")
print(f"Session Hash: {result.observation.session_hash}")
# Test concurrency with different wait times
wait_times = [0.5, 1.0, 2.0]
for seconds in wait_times:
result = benchmarkenv.step(BenchmarkAction(wait_seconds=seconds))
print(f"Waited: {result.observation.waited_seconds}s")
print(f" β Timestamp: {result.observation.timestamp}")
print(f" β Reward: {result.reward}")
print(f" β Server PID: {result.observation.pid}")
finally:
# Always clean up
benchmarkenv.close()
That's it! The BenchmarkEnv.from_docker_image() method handles:
- Starting the Docker container
- Waiting for the server to be ready
- Connecting to the environment
- Container cleanup when you call
close()
Testing Concurrency
The benchmark environment is designed to test concurrent execution:
import asyncio
from benchmark import BenchmarkAction, BenchmarkEnv
async def parallel_requests():
# Connect to multiple servers or same server
clients = [
BenchmarkEnv(base_url="http://localhost:8000"),
BenchmarkEnv(base_url="http://localhost:8001"),
BenchmarkEnv(base_url="http://localhost:8002"),
]
# Reset all clients
for client in clients:
result = client.reset()
print(f"Server {result.observation.session_hash}: PID {result.observation.pid}")
# Send concurrent requests with different wait times
import concurrent.futures
with concurrent.futures.ThreadPoolExecutor(max_workers=10) as executor:
futures = []
for i, client in enumerate(clients):
future = executor.submit(
client.step,
BenchmarkAction(wait_seconds=i + 1)
)
futures.append((client, future))
for client, future in futures:
result = future.result()
print(f"Server {result.observation.session_hash} waited {result.observation.waited_seconds}s")
# Clean up
for client in clients:
client.close()
Building the Docker Image
Before using the environment, you need to build the Docker image:
# From project root
docker build -t benchmark-env:latest -f server/Dockerfile .
Deploying to Hugging Face Spaces
You can easily deploy your OpenEnv environment to Hugging Face Spaces using the openenv push command:
# From the environment directory (where openenv.yaml is located)
openenv push
# Or specify options
openenv push --namespace my-org --private
The openenv push command will:
- Validate that the directory is an OpenEnv environment (checks for
openenv.yaml) - Prepare a custom build for Hugging Face Docker space (enables web interface)
- Upload to Hugging Face (ensuring you're logged in)
Prerequisites
- Authenticate with Hugging Face: The command will prompt for login if not already authenticated
Options
--directory,-d: Directory containing the OpenEnv environment (defaults to current directory)--repo-id,-r: Repository ID in format 'username/repo-name' (defaults to 'username/env-name' from openenv.yaml)--base-image,-b: Base Docker image to use (overrides Dockerfile FROM)--private: Deploy the space as private (default: public)
Examples
# Push to your personal namespace (defaults to username/env-name from openenv.yaml)
openenv push
# Push to a specific repository
openenv push --repo-id my-org/my-env
# Push with a custom base image
openenv push --base-image ghcr.io/meta-pytorch/openenv-base:latest
# Push as a private space
openenv push --private
# Combine options
openenv push --repo-id my-org/my-env --base-image custom-base:latest --private
After deployment, your space will be available at:
https://huggingface.co/spaces/<repo-id>
The deployed space includes:
- Web Interface at
/web- Interactive UI for exploring the environment - API Documentation at
/docs- Full OpenAPI/Swagger interface - Health Check at
/health- Container health monitoring
Environment Details
Action
BenchmarkAction: Contains a single field
wait_seconds(float) - Seconds to wait/sleep before returning (default: 0.0)
Observation
BenchmarkObservation: Contains server identity and timing information
host_url(str) - The URL of the server that handled the requestpid(int) - Process ID of the serversession_hash(str) - Unique 16-character hash identifying this server sessionwaited_seconds(float) - Actual seconds waitedtimestamp(float) - Unix timestamp when observation was createdreward(float) - Reward based on wait timedone(bool) - Always False for benchmark environmentmetadata(dict) - Additional info
Reward
The reward is calculated as: 1.0 / (1.0 + wait_seconds)
- 0 seconds β reward: 1.0
- 1 second β reward: 0.5
- 2 seconds β reward: 0.33
- Encourages faster responses
Advanced Usage
Connecting to an Existing Server
If you already have a Benchmark environment server running, you can connect directly:
from benchmark import BenchmarkEnv, BenchmarkAction
# Connect to existing server
benchmarkenv = BenchmarkEnv(base_url="<ENV_HTTP_URL_HERE>")
# Use as normal
result = benchmarkenv.reset()
print(f"Connected to server: {result.observation.host_url}")
print(f"Session: {result.observation.session_hash}")
result = benchmarkenv.step(BenchmarkAction(wait_seconds=1.5))
print(f"Waited {result.observation.waited_seconds}s")
Note: When connecting to an existing server, benchmarkenv.close() will NOT stop the server.
Development & Testing
Direct Environment Testing
Test the environment logic directly without starting the HTTP server:
# From the server directory
python3 server/benchmark_environment.py
This verifies that:
- Environment resets correctly
- Step executes actions properly
- State tracking works
- Server identity is returned correctly
Running Locally
Run the server locally for development:
uvicorn server.app:app --reload
Project Structure
benchmark/
βββ .dockerignore # Docker build exclusions
βββ __init__.py # Module exports
βββ README.md # This file
βββ openenv.yaml # OpenEnv manifest
βββ pyproject.toml # Project metadata and dependencies
βββ uv.lock # Locked dependencies (generated)
βββ client.py # BenchmarkEnv client implementation
βββ models.py # Action and Observation models
βββ server/
βββ __init__.py # Server module exports
βββ benchmark_environment.py # Core environment logic
βββ app.py # FastAPI application
βββ Dockerfile # Container image definition