|
|
--- |
|
|
language: bbc |
|
|
language_name: Batak Toba |
|
|
language_family: austronesian_batak |
|
|
tags: |
|
|
- wikilangs |
|
|
- nlp |
|
|
- tokenizer |
|
|
- embeddings |
|
|
- n-gram |
|
|
- markov |
|
|
- wikipedia |
|
|
- feature-extraction |
|
|
- sentence-similarity |
|
|
- tokenization |
|
|
- n-grams |
|
|
- markov-chain |
|
|
- text-mining |
|
|
- fasttext |
|
|
- babelvec |
|
|
- vocabulous |
|
|
- vocabulary |
|
|
- monolingual |
|
|
- family-austronesian_batak |
|
|
license: mit |
|
|
library_name: wikilangs |
|
|
pipeline_tag: text-generation |
|
|
datasets: |
|
|
- omarkamali/wikipedia-monthly |
|
|
dataset_info: |
|
|
name: wikipedia-monthly |
|
|
description: Monthly snapshots of Wikipedia articles across 300+ languages |
|
|
metrics: |
|
|
- name: best_compression_ratio |
|
|
type: compression |
|
|
value: 3.662 |
|
|
- name: best_isotropy |
|
|
type: isotropy |
|
|
value: 0.8133 |
|
|
- name: vocabulary_size |
|
|
type: vocab |
|
|
value: 0 |
|
|
generated: 2026-01-03 |
|
|
--- |
|
|
|
|
|
# Batak Toba - Wikilangs Models |
|
|
## Comprehensive Research Report & Full Ablation Study |
|
|
|
|
|
This repository contains NLP models trained and evaluated by Wikilangs, specifically on **Batak Toba** Wikipedia data. |
|
|
We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings. |
|
|
|
|
|
## ๐ Repository Contents |
|
|
|
|
|
### Models & Assets |
|
|
|
|
|
- Tokenizers (8k, 16k, 32k, 64k) |
|
|
- N-gram models (2, 3, 4, 5-gram) |
|
|
- Markov chains (context of 1, 2, 3, 4 and 5) |
|
|
- Subword N-gram and Markov chains |
|
|
- Embeddings in various sizes and dimensions (aligned and unaligned) |
|
|
- Language Vocabulary |
|
|
- Language Statistics |
|
|
|
|
|
 |
|
|
|
|
|
### Analysis and Evaluation |
|
|
|
|
|
- [1. Tokenizer Evaluation](#1-tokenizer-evaluation) |
|
|
- [2. N-gram Model Evaluation](#2-n-gram-model-evaluation) |
|
|
- [3. Markov Chain Evaluation](#3-markov-chain-evaluation) |
|
|
- [4. Vocabulary Analysis](#4-vocabulary-analysis) |
|
|
- [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation) |
|
|
- [6. Morphological Analysis (Experimental)](#6--morphological-analysis-experimental) |
|
|
- [7. Summary & Recommendations](#7-summary--recommendations) |
|
|
- [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide) |
|
|
- [Visualizations Index](#visualizations-index) |
|
|
|
|
|
--- |
|
|
## 1. Tokenizer Evaluation |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
### Results |
|
|
|
|
|
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens | |
|
|
|------------|-------------|---------------|----------|--------------| |
|
|
| **8k** | 3.300x | 3.30 | 0.2266% | 1,666,856 | |
|
|
| **16k** | 3.529x | 3.53 | 0.2423% | 1,558,753 | |
|
|
| **32k** | 3.662x ๐ | 3.66 | 0.2515% | 1,502,009 | |
|
|
|
|
|
### Tokenization Examples |
|
|
|
|
|
Below are sample sentences tokenized with each vocabulary size: |
|
|
|
|
|
**Sample 1:** `Janji i ma sada huta (desa) na adong di Kecamatan Siempat Nempu Hilir, Kabupaten...` |
|
|
|
|
|
| Vocab | Tokens | Count | |
|
|
|-------|--------|-------| |
|
|
| 8k | `โjanji โi โma โsada โhuta โ( desa ) โna โadong ... (+16 more)` | 26 | |
|
|
| 16k | `โjanji โi โma โsada โhuta โ( desa ) โna โadong ... (+16 more)` | 26 | |
|
|
| 32k | `โjanji โi โma โsada โhuta โ( desa ) โna โadong ... (+16 more)` | 26 | |
|
|
|
|
|
**Sample 2:** `Siboras i ma sada huta (desa) na adong di Kecamatan Silima Pungga Pungga, Kabupa...` |
|
|
|
|
|
| Vocab | Tokens | Count | |
|
|
|-------|--------|-------| |
|
|
| 8k | `โsib oras โi โma โsada โhuta โ( desa ) โna ... (+16 more)` | 26 | |
|
|
| 16k | `โsiboras โi โma โsada โhuta โ( desa ) โna โadong ... (+15 more)` | 25 | |
|
|
| 32k | `โsiboras โi โma โsada โhuta โ( desa ) โna โadong ... (+15 more)` | 25 | |
|
|
|
|
|
**Sample 3:** `Sukorejo i ma sada huta na adong di Kecamatan Ulujami, Kabupaten Pemalang, Propi...` |
|
|
|
|
|
| Vocab | Tokens | Count | |
|
|
|-------|--------|-------| |
|
|
| 8k | `โsuk orejo โi โma โsada โhuta โna โadong โdi โkecamatan ... (+11 more)` | 21 | |
|
|
| 16k | `โsukorejo โi โma โsada โhuta โna โadong โdi โkecamatan โulujami ... (+10 more)` | 20 | |
|
|
| 32k | `โsukorejo โi โma โsada โhuta โna โadong โdi โkecamatan โulujami ... (+10 more)` | 20 | |
|
|
|
|
|
|
|
|
### Key Findings |
|
|
|
|
|
- **Best Compression:** 32k achieves 3.662x compression |
|
|
- **Lowest UNK Rate:** 8k with 0.2266% unknown tokens |
|
|
- **Trade-off:** Larger vocabularies improve compression but increase model size |
|
|
- **Recommendation:** 32k vocabulary provides optimal balance for production use |
|
|
|
|
|
--- |
|
|
## 2. N-gram Model Evaluation |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
### Results |
|
|
|
|
|
| N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage | |
|
|
|--------|---------|------------|---------|----------------|------------------|-------------------| |
|
|
| **2-gram** | Word | 8,503 | 13.05 | 26,404 | 17.5% | 42.9% | |
|
|
| **2-gram** | Subword | 185 ๐ | 7.53 | 3,447 | 77.7% | 99.2% | |
|
|
| **3-gram** | Word | 22,449 | 14.45 | 43,137 | 8.4% | 25.3% | |
|
|
| **3-gram** | Subword | 1,216 | 10.25 | 18,046 | 38.1% | 83.2% | |
|
|
| **4-gram** | Word | 44,360 | 15.44 | 67,584 | 5.9% | 16.2% | |
|
|
| **4-gram** | Subword | 5,587 | 12.45 | 70,061 | 19.7% | 54.7% | |
|
|
| **5-gram** | Word | 29,774 | 14.86 | 42,910 | 7.1% | 18.6% | |
|
|
| **5-gram** | Subword | 17,403 | 14.09 | 153,430 | 12.1% | 36.7% | |
|
|
|
|
|
### Top 5 N-grams by Size |
|
|
|
|
|
**2-grams (Word):** |
|
|
|
|
|
| Rank | N-gram | Count | |
|
|
|------|--------|-------| |
|
|
| 1 | `angka na` | 4,424 | |
|
|
| 2 | `dung i` | 4,327 | |
|
|
| 3 | `ni si` | 4,060 | |
|
|
| 4 | `i ma` | 3,682 | |
|
|
| 5 | `ni jahowa` | 2,892 | |
|
|
|
|
|
**3-grams (Word):** |
|
|
|
|
|
| Rank | N-gram | Count | |
|
|
|------|--------|-------| |
|
|
| 1 | `anak ni si` | 1,613 | |
|
|
| 2 | `i ma sada` | 784 | |
|
|
| 3 | `na adong di` | 741 | |
|
|
| 4 | `dung i ninna` | 735 | |
|
|
| 5 | `hata ni jahowa` | 703 | |
|
|
|
|
|
**4-grams (Word):** |
|
|
|
|
|
| Rank | N-gram | Count | |
|
|
|------|--------|-------| |
|
|
| 1 | `on do hata ni` | 423 | |
|
|
| 2 | `i ma sada huta` | 417 | |
|
|
| 3 | `songon on do hata` | 408 | |
|
|
| 4 | `na adong di kecamatan` | 353 | |
|
|
| 5 | `angka anak ni si` | 336 | |
|
|
|
|
|
**5-grams (Word):** |
|
|
|
|
|
| Rank | N-gram | Count | |
|
|
|------|--------|-------| |
|
|
| 1 | `songon on do hata ni` | 406 | |
|
|
| 2 | `on do hata ni jahowa` | 250 | |
|
|
| 3 | `i ma sada huta na` | 215 | |
|
|
| 4 | `desa na adong di kecamatan` | 191 | |
|
|
| 5 | `km jala godang ni ruasna` | 175 | |
|
|
|
|
|
**2-grams (Subword):** |
|
|
|
|
|
| Rank | N-gram | Count | |
|
|
|------|--------|-------| |
|
|
| 1 | `a _` | 206,965 | |
|
|
| 2 | `a n` | 205,323 | |
|
|
| 3 | `n g` | 154,062 | |
|
|
| 4 | `i _` | 142,882 | |
|
|
| 5 | `n a` | 122,548 | |
|
|
|
|
|
**3-grams (Subword):** |
|
|
|
|
|
| Rank | N-gram | Count | |
|
|
|------|--------|-------| |
|
|
| 1 | `a n g` | 81,918 | |
|
|
| 2 | `_ m a` | 76,355 | |
|
|
| 3 | `n a _` | 58,981 | |
|
|
| 4 | `_ n a` | 53,557 | |
|
|
| 5 | `a n _` | 51,287 | |
|
|
|
|
|
**4-grams (Subword):** |
|
|
|
|
|
| Rank | N-gram | Count | |
|
|
|------|--------|-------| |
|
|
| 1 | `_ n i _` | 34,904 | |
|
|
| 2 | `_ n a _` | 33,621 | |
|
|
| 3 | `_ d i _` | 25,919 | |
|
|
| 4 | `a n g k` | 24,948 | |
|
|
| 5 | `_ m a _` | 23,827 | |
|
|
|
|
|
**5-grams (Subword):** |
|
|
|
|
|
| Rank | N-gram | Count | |
|
|
|------|--------|-------| |
|
|
| 1 | `a n g k a` | 19,235 | |
|
|
| 2 | `_ a n g k` | 17,946 | |
|
|
| 3 | `n g k a _` | 17,765 | |
|
|
| 4 | `_ j a l a` | 14,671 | |
|
|
| 5 | `j a l a _` | 14,594 | |
|
|
|
|
|
|
|
|
### Key Findings |
|
|
|
|
|
- **Best Perplexity:** 2-gram (subword) with 185 |
|
|
- **Entropy Trend:** Decreases with larger n-grams (more predictable) |
|
|
- **Coverage:** Top-1000 patterns cover ~37% of corpus |
|
|
- **Recommendation:** 4-gram or 5-gram for best predictive performance |
|
|
|
|
|
--- |
|
|
## 3. Markov Chain Evaluation |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
### Results |
|
|
|
|
|
| Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability | |
|
|
|---------|---------|-------------|------------|------------------|-----------------|----------------| |
|
|
| **1** | Word | 0.9199 | 1.892 | 6.44 | 50,491 | 8.0% | |
|
|
| **1** | Subword | 0.9288 | 1.904 | 7.09 | 1,431 | 7.1% | |
|
|
| **2** | Word | 0.3746 | 1.296 | 2.02 | 324,952 | 62.5% | |
|
|
| **2** | Subword | 0.7034 | 1.628 | 4.04 | 10,144 | 29.7% | |
|
|
| **3** | Word | 0.1537 | 1.112 | 1.28 | 656,964 | 84.6% | |
|
|
| **3** | Subword | 0.6472 | 1.566 | 3.17 | 40,950 | 35.3% | |
|
|
| **4** | Word | 0.0591 ๐ | 1.042 | 1.09 | 838,369 | 94.1% | |
|
|
| **4** | Subword | 0.5206 | 1.435 | 2.40 | 129,601 | 47.9% | |
|
|
|
|
|
### Generated Text Samples (Word-based) |
|
|
|
|
|
Below are text samples generated from each word-based Markov chain model: |
|
|
|
|
|
**Context Size 1:** |
|
|
|
|
|
1. `ni tano naung leleng on marupaya maningkathon kesadaran masarakat na pauli pintu ni si hannas dohot` |
|
|
2. `na talup do angka naposongku alai anggo raoanna nang jahudi tubu ni halak batak di tongatongamu` |
|
|
3. `i si arni anak ni harangan na mengatur istimewa dok gumodang sian saluhut na nidabuna i` |
|
|
|
|
|
**Context Size 2:** |
|
|
|
|
|
1. `angka na di ginjang ni angka ompunami umbahen manjadi angka i tu ahu do jahowa molo ahu` |
|
|
2. `dung i ro di salelenglelengna psalmen 94 94 1 ale anaha sai parateatehon hamu panariason ni bibirhon` |
|
|
3. `ni si jakkob anak ni si rehabeam di jerusalem 7 17 dua lombu lima birubiru tunggal sada` |
|
|
|
|
|
**Context Size 3:** |
|
|
|
|
|
1. `anak ni si aron hahanasida i marhalado di joro ni jahowa tungkan jolo ni rimberimbe i 40 27` |
|
|
2. `i ma sada nagara na maringanan di lobu panjang` |
|
|
3. `na adong di halak batak toba tombur tarbahen sian sibuk ni manuk na dibumbui` |
|
|
|
|
|
**Context Size 4:** |
|
|
|
|
|
1. `on do hata ni tuhan jahowa nunga pola hupatoltol tanganku maruari ingkon lehononku do i tu ompumuna ...` |
|
|
2. `i ma sada huta na adong di kecamatan silima pungga pungga kabupaten dairi propinsi sumatera utara in...` |
|
|
3. `songon on do hata ni tuhan jahowa hape so tutu jahowa mandok 22 29 ia situan na torop isi` |
|
|
|
|
|
|
|
|
### Generated Text Samples (Subword-based) |
|
|
|
|
|
Below are text samples generated from each subword-based Markov chain model: |
|
|
|
|
|
**Context Size 1:** |
|
|
|
|
|
1. `_man_i_sa_nina_s` |
|
|
2. `amai_palalaseu_n` |
|
|
3. `ndi_แฏ_no_pa_de_d` |
|
|
|
|
|
**Context Size 2:** |
|
|
|
|
|
1. `a_lamar_na._jalut` |
|
|
2. `ani_ni_ahit_bando` |
|
|
3. `ng_dongkop_hot_ad` |
|
|
|
|
|
**Context Size 3:** |
|
|
|
|
|
1. `angitlawa_rajai,_d` |
|
|
2. `_marhalahite_hite_` |
|
|
3. `na_sapangku_imbolo` |
|
|
|
|
|
**Context Size 4:** |
|
|
|
|
|
1. `_ni_jahowa_hamu_ang` |
|
|
2. `_na_marsaro_mameuth` |
|
|
3. `_di_jeremia_7_novem` |
|
|
|
|
|
|
|
|
### Key Findings |
|
|
|
|
|
- **Best Predictability:** Context-4 (word) with 94.1% predictability |
|
|
- **Branching Factor:** Decreases with context size (more deterministic) |
|
|
- **Memory Trade-off:** Larger contexts require more storage (129,601 contexts) |
|
|
- **Recommendation:** Context-3 or Context-4 for text generation |
|
|
|
|
|
--- |
|
|
## 4. Vocabulary Analysis |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
### Statistics |
|
|
|
|
|
| Metric | Value | |
|
|
|--------|-------| |
|
|
| Vocabulary Size | 24,923 | |
|
|
| Total Tokens | 971,594 | |
|
|
| Mean Frequency | 38.98 | |
|
|
| Median Frequency | 4 | |
|
|
| Frequency Std Dev | 557.86 | |
|
|
|
|
|
### Most Common Words |
|
|
|
|
|
| Rank | Word | Frequency | |
|
|
|------|------|-----------| |
|
|
| 1 | ni | 34,971 | |
|
|
| 2 | na | 33,958 | |
|
|
| 3 | i | 32,913 | |
|
|
| 4 | ma | 26,658 | |
|
|
| 5 | di | 25,940 | |
|
|
| 6 | tu | 20,429 | |
|
|
| 7 | do | 19,116 | |
|
|
| 8 | angka | 17,411 | |
|
|
| 9 | jala | 14,584 | |
|
|
| 10 | dohot | 13,515 | |
|
|
|
|
|
### Least Common Words (from vocabulary) |
|
|
|
|
|
| Rank | Word | Frequency | |
|
|
|------|------|-----------| |
|
|
| 1 | แฏแฏแฏแฏชแฏแฏฒแฏ | 2 | |
|
|
| 2 | kayo | 2 | |
|
|
| 3 | uttar | 2 | |
|
|
| 4 | ltr | 2 | |
|
|
| 5 | font | 2 | |
|
|
| 6 | ebrima | 2 | |
|
|
| 7 | border | 2 | |
|
|
| 8 | cellpadding | 2 | |
|
|
| 9 | td | 2 | |
|
|
| 10 | align | 2 | |
|
|
|
|
|
### Zipf's Law Analysis |
|
|
|
|
|
| Metric | Value | |
|
|
|--------|-------| |
|
|
| Zipf Coefficient | 1.1806 | |
|
|
| Rยฒ (Goodness of Fit) | 0.997033 | |
|
|
| Adherence Quality | **excellent** | |
|
|
|
|
|
### Coverage Analysis |
|
|
|
|
|
| Top N Words | Coverage | |
|
|
|-------------|----------| |
|
|
| Top 100 | 53.7% | |
|
|
| Top 1,000 | 78.5% | |
|
|
| Top 5,000 | 91.4% | |
|
|
| Top 10,000 | 95.7% | |
|
|
|
|
|
### Key Findings |
|
|
|
|
|
- **Zipf Compliance:** Rยฒ=0.9970 indicates excellent adherence to Zipf's law |
|
|
- **High Frequency Dominance:** Top 100 words cover 53.7% of corpus |
|
|
- **Long Tail:** 14,923 words needed for remaining 4.3% coverage |
|
|
|
|
|
--- |
|
|
## 5. Word Embeddings Evaluation |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
|
|
|
### 5.1 Cross-Lingual Alignment |
|
|
|
|
|
 |
|
|
|
|
|
 |
|
|
|
|
|
|
|
|
### 5.2 Model Comparison |
|
|
|
|
|
| Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 | |
|
|
|-------|-----------|----------|------------------|---------------|----------------| |
|
|
| **mono_32d** | 32 | 0.8133 | 0.3464 | N/A | N/A | |
|
|
| **mono_64d** | 64 | 0.7715 | 0.2725 | N/A | N/A | |
|
|
| **mono_128d** | 128 | 0.4709 | 0.2523 | N/A | N/A | |
|
|
| **aligned_32d** | 32 | 0.8133 ๐ | 0.3386 | 0.0140 | 0.1240 | |
|
|
| **aligned_64d** | 64 | 0.7715 | 0.2780 | 0.0560 | 0.2460 | |
|
|
| **aligned_128d** | 128 | 0.4709 | 0.2525 | 0.1340 | 0.3160 | |
|
|
|
|
|
### Key Findings |
|
|
|
|
|
- **Best Isotropy:** aligned_32d with 0.8133 (more uniform distribution) |
|
|
- **Semantic Density:** Average pairwise similarity of 0.2900. Lower values indicate better semantic separation. |
|
|
- **Alignment Quality:** Aligned models achieve up to 13.4% R@1 in cross-lingual retrieval. |
|
|
- **Recommendation:** 128d aligned for best cross-lingual performance |
|
|
|
|
|
--- |
|
|
## 6. Morphological Analysis (Experimental) |
|
|
|
|
|
This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data. |
|
|
|
|
|
### 6.1 Productivity & Complexity |
|
|
|
|
|
| Metric | Value | Interpretation | Recommendation | |
|
|
|--------|-------|----------------|----------------| |
|
|
| Productivity Index | **5.000** | High morphological productivity | Reliable analysis | |
|
|
| Idiomaticity Gap | **-0.493** | Low formulaic content | - | |
|
|
|
|
|
### 6.2 Affix Inventory (Productive Units) |
|
|
|
|
|
These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts. |
|
|
|
|
|
#### Productive Prefixes |
|
|
| Prefix | Examples | |
|
|
|--------|----------| |
|
|
| `-ma` | mangain, manuhati, mamingkiri | |
|
|
| `-pa` | pangir, pahosing, parsonduk | |
|
|
| `-di` | disiorhon, didege, diri | |
|
|
| `-man` | mangain, manuhati, mangkasiholi | |
|
|
| `-mar` | marilah, marhabanhaban, marnioli | |
|
|
| `-ha` | hapistaranmuna, harajaon, hanna | |
|
|
| `-par` | parsonduk, partalianta, parnidaan | |
|
|
| `-si` | sitorus, sitalutuk, sinimpan | |
|
|
|
|
|
#### Productive Suffixes |
|
|
| Suffix | Examples | |
|
|
|--------|----------| |
|
|
| `-n` | disiorhon, mangain, getasan | |
|
|
| `-a` | acara, opatsa, hapistaranmuna | |
|
|
| `-on` | disiorhon, harajaon, mandaon | |
|
|
| `-an` | getasan, nangkohan, bulanan | |
|
|
| `-na` | hapistaranmuna, etonganna, utamana | |
|
|
| `-hon` | disiorhon, hinungkuphon, ditoishon | |
|
|
| `-ng` | humosing, pahosing, taretong | |
|
|
| `-nna` | etonganna, hanna, salpuanna | |
|
|
|
|
|
### 6.3 Bound Stems (Lexical Roots) |
|
|
|
|
|
Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid. |
|
|
|
|
|
| Stem | Cohesion | Substitutability | Examples | |
|
|
|------|----------|------------------|----------| |
|
|
| `anga` | 1.61x | 127 contexts | angan, langa, sanga | |
|
|
| `angk` | 1.53x | 157 contexts | angka, bangko, angkal | |
|
|
| `ngka` | 1.56x | 89 contexts | angka, bungka, engkau | |
|
|
| `mang` | 1.64x | 61 contexts | amang, mangan, memang | |
|
|
| `ngko` | 1.70x | 42 contexts | bangko, ingkon, angkot | |
|
|
| `bang` | 1.45x | 72 contexts | bange, abang, bangis | |
|
|
| `ingk` | 1.48x | 60 contexts | lingka, ingkau, ingkon | |
|
|
| `onga` | 1.68x | 36 contexts | tonga, longa, bongal | |
|
|
| `bahe` | 1.79x | 26 contexts | bahen, dibahe, ibahen | |
|
|
| `ngan` | 1.40x | 65 contexts | angan, ingan, mangan | |
|
|
| `ongo` | 1.62x | 36 contexts | longo, kongo, rongom | |
|
|
| `angg` | 1.31x | 78 contexts | anggi, anggo, angguk | |
|
|
|
|
|
### 6.4 Affix Compatibility (Co-occurrence) |
|
|
|
|
|
This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology. |
|
|
|
|
|
| Prefix | Suffix | Frequency | Examples | |
|
|
|--------|--------|-----------|----------| |
|
|
| `-pa` | `-n` | 358 words | parsapataan, partingkian | |
|
|
| `-ma` | `-n` | 206 words | marpadanpadan, marharajaon | |
|
|
| `-pa` | `-on` | 200 words | patoltolhon, paimbarhon | |
|
|
| `-pa` | `-a` | 184 words | pallawa, pasalihonsa | |
|
|
| `-pa` | `-an` | 157 words | parsapataan, partingkian | |
|
|
| `-di` | `-n` | 156 words | disiaphon, dilembagahon | |
|
|
| `-di` | `-on` | 134 words | disiaphon, dilembagahon | |
|
|
| `-ha` | `-n` | 128 words | hasundatan, hasusaan | |
|
|
| `-pa` | `-na` | 119 words | parsuhatonmuna, pabalionna | |
|
|
| `-ma` | `-on` | 116 words | marharajaon, mangaluhon | |
|
|
|
|
|
### 6.5 Recursive Morpheme Segmentation |
|
|
|
|
|
Using **Recursive Hierarchical Substitutability**, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., `prefix-prefix-root-suffix`). |
|
|
|
|
|
| Word | Suggested Split | Confidence | Stem | |
|
|
|------|-----------------|------------|------| |
|
|
| pabotohononku | **`pa-boto-hon-on-ku`** | 9.0 | `boto` | |
|
|
| paradiananku | **`par-adian-an-ku`** | 7.5 | `adian` | |
|
|
| sipasahaton | **`si-pa-sahat-on`** | 7.5 | `sahat` | |
|
|
| marparmangsian | **`mar-par-mang-sian`** | 7.5 | `sian` | |
|
|
| panailingku | **`pan-aili-ng-ku`** | 7.5 | `aili` | |
|
|
| pardonganan | **`par-dong-an-an`** | 7.5 | `dong` | |
|
|
| marhamuliaon | **`mar-ha-mulia-on`** | 7.5 | `mulia` | |
|
|
| diparsiajari | **`di-par-si-ajari`** | 7.5 | `ajari` | |
|
|
| sipaingotna | **`si-pa-ingot-na`** | 7.5 | `ingot` | |
|
|
| sipatudoson | **`si-pa-tudos-on`** | 7.5 | `tudos` | |
|
|
| dipangasahon | **`di-pan-gasa-hon`** | 7.5 | `gasa` | |
|
|
| situtungon | **`si-tutu-ng-on`** | 7.5 | `tutu` | |
|
|
| pasahaton | **`pa-sahat-on`** | 6.0 | `sahat` | |
|
|
| parbungkason | **`par-bungkas-on`** | 6.0 | `bungkas` | |
|
|
| dipajomba | **`di-pa-jomba`** | 6.0 | `jomba` | |
|
|
|
|
|
### 6.6 Linguistic Interpretation |
|
|
|
|
|
> **Automated Insight:** |
|
|
The language Batak Toba shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding. |
|
|
|
|
|
--- |
|
|
## 7. Summary & Recommendations |
|
|
|
|
|
 |
|
|
|
|
|
### Production Recommendations |
|
|
|
|
|
| Component | Recommended | Rationale | |
|
|
|-----------|-------------|-----------| |
|
|
| Tokenizer | **32k BPE** | Best compression (3.66x) | |
|
|
| N-gram | **2-gram** | Lowest perplexity (185) | |
|
|
| Markov | **Context-4** | Highest predictability (94.1%) | |
|
|
| Embeddings | **100d** | Balanced semantic capture and isotropy | |
|
|
|
|
|
|
|
|
--- |
|
|
## Appendix: Metrics Glossary & Interpretation Guide |
|
|
|
|
|
This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report. |
|
|
|
|
|
### Tokenizer Metrics |
|
|
|
|
|
**Compression Ratio** |
|
|
> *Definition:* The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text. |
|
|
> |
|
|
> *Intuition:* Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average. |
|
|
> |
|
|
> *What to seek:* Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information. |
|
|
|
|
|
**Average Token Length (Fertility)** |
|
|
> *Definition:* Mean number of characters per token produced by the tokenizer. |
|
|
> |
|
|
> *Intuition:* Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length. |
|
|
> |
|
|
> *What to seek:* Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens. |
|
|
|
|
|
**Unknown Token Rate (OOV Rate)** |
|
|
> *Definition:* Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent. |
|
|
> |
|
|
> *Intuition:* Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences. |
|
|
> |
|
|
> *What to seek:* Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback. |
|
|
|
|
|
### N-gram Model Metrics |
|
|
|
|
|
**Perplexity** |
|
|
> *Definition:* Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction. |
|
|
> |
|
|
> *Intuition:* If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options. |
|
|
> |
|
|
> *What to seek:* Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size. |
|
|
|
|
|
**Entropy** |
|
|
> *Definition:* Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy. |
|
|
> |
|
|
> *Intuition:* High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character. |
|
|
> |
|
|
> *What to seek:* Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases. |
|
|
|
|
|
**Coverage (Top-K)** |
|
|
> *Definition:* Percentage of corpus occurrences explained by the top K most frequent n-grams. |
|
|
> |
|
|
> *Intuition:* High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage. |
|
|
> |
|
|
> *What to seek:* Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text. |
|
|
|
|
|
### Markov Chain Metrics |
|
|
|
|
|
**Average Entropy** |
|
|
> *Definition:* Mean entropy across all contexts, measuring average uncertainty in next-word prediction. |
|
|
> |
|
|
> *Intuition:* Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations). |
|
|
> |
|
|
> *What to seek:* Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions. |
|
|
|
|
|
**Branching Factor** |
|
|
> *Definition:* Average number of unique next tokens observed for each context. |
|
|
> |
|
|
> *Intuition:* High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive). |
|
|
> |
|
|
> *What to seek:* Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains. |
|
|
|
|
|
**Predictability** |
|
|
> *Definition:* Derived metric: (1 - normalized_entropy) ร 100%. Indicates how deterministic the model's predictions are. |
|
|
> |
|
|
> *Intuition:* 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes. |
|
|
> |
|
|
> *What to seek:* Higher predictability for text generation quality, but too high (>98%) may produce repetitive output. |
|
|
|
|
|
### Vocabulary & Zipf's Law Metrics |
|
|
|
|
|
**Zipf's Coefficient** |
|
|
> *Definition:* The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1. |
|
|
> |
|
|
> *Intuition:* A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare. |
|
|
> |
|
|
> *What to seek:* Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text. |
|
|
|
|
|
**Rยฒ (Coefficient of Determination)** |
|
|
> *Definition:* Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1. |
|
|
> |
|
|
> *Intuition:* Rยฒ near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns. |
|
|
> |
|
|
> *What to seek:* Rยฒ > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora. |
|
|
|
|
|
**Vocabulary Coverage** |
|
|
> *Definition:* Cumulative percentage of corpus tokens accounted for by the top N words. |
|
|
> |
|
|
> *Intuition:* Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words. |
|
|
> |
|
|
> *What to seek:* Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary. |
|
|
|
|
|
### Word Embedding Metrics |
|
|
|
|
|
**Isotropy** |
|
|
> *Definition:* Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values. |
|
|
> |
|
|
> *Intuition:* High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness. |
|
|
> |
|
|
> *What to seek:* Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy. |
|
|
|
|
|
**Average Norm** |
|
|
> *Definition:* Mean magnitude (L2 norm) of word vectors in the embedding space. |
|
|
> |
|
|
> *Intuition:* Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained. |
|
|
> |
|
|
> *What to seek:* Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation). |
|
|
|
|
|
**Cosine Similarity** |
|
|
> *Definition:* Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction). |
|
|
> |
|
|
> *Intuition:* Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings. |
|
|
> |
|
|
> *What to seek:* Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7. |
|
|
|
|
|
**t-SNE Visualization** |
|
|
> *Definition:* t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization. |
|
|
> |
|
|
> *Intuition:* Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence. |
|
|
> |
|
|
> *What to seek:* Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure. |
|
|
|
|
|
### General Interpretation Guidelines |
|
|
|
|
|
1. **Compare within model families:** Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer). |
|
|
2. **Consider trade-offs:** Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate). |
|
|
3. **Context matters:** Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification. |
|
|
4. **Corpus influence:** All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature. |
|
|
5. **Language-specific patterns:** Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages. |
|
|
|
|
|
|
|
|
### Visualizations Index |
|
|
|
|
|
| Visualization | Description | |
|
|
|---------------|-------------| |
|
|
| Tokenizer Compression | Compression ratios by vocabulary size | |
|
|
| Tokenizer Fertility | Average token length by vocabulary | |
|
|
| Tokenizer OOV | Unknown token rates | |
|
|
| Tokenizer Total Tokens | Total tokens by vocabulary | |
|
|
| N-gram Perplexity | Perplexity by n-gram size | |
|
|
| N-gram Entropy | Entropy by n-gram size | |
|
|
| N-gram Coverage | Top pattern coverage | |
|
|
| N-gram Unique | Unique n-gram counts | |
|
|
| Markov Entropy | Entropy by context size | |
|
|
| Markov Branching | Branching factor by context | |
|
|
| Markov Contexts | Unique context counts | |
|
|
| Zipf's Law | Frequency-rank distribution with fit | |
|
|
| Vocab Frequency | Word frequency distribution | |
|
|
| Top 20 Words | Most frequent words | |
|
|
| Vocab Coverage | Cumulative coverage curve | |
|
|
| Embedding Isotropy | Vector space uniformity | |
|
|
| Embedding Norms | Vector magnitude distribution | |
|
|
| Embedding Similarity | Word similarity heatmap | |
|
|
| Nearest Neighbors | Similar words for key terms | |
|
|
| t-SNE Words | 2D word embedding visualization | |
|
|
| t-SNE Sentences | 2D sentence embedding visualization | |
|
|
| Position Encoding | Encoding method comparison | |
|
|
| Model Sizes | Storage requirements | |
|
|
| Performance Dashboard | Comprehensive performance overview | |
|
|
|
|
|
--- |
|
|
## About This Project |
|
|
|
|
|
### Data Source |
|
|
|
|
|
Models trained on [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly) - a monthly snapshot of Wikipedia articles across 300+ languages. |
|
|
|
|
|
### Project |
|
|
|
|
|
A project by **[Wikilangs](https://wikilangs.org)** - Open-source NLP models for every Wikipedia language. |
|
|
|
|
|
### Maintainer |
|
|
|
|
|
[Omar Kamali](https://omarkamali.com) - [Omneity Labs](https://omneitylabs.com) |
|
|
|
|
|
### Citation |
|
|
|
|
|
If you use these models in your research, please cite: |
|
|
|
|
|
```bibtex |
|
|
@misc{wikilangs2025, |
|
|
author = {Kamali, Omar}, |
|
|
title = {Wikilangs: Open NLP Models for Wikipedia Languages}, |
|
|
year = {2025}, |
|
|
doi = {10.5281/zenodo.18073153}, |
|
|
publisher = {Zenodo}, |
|
|
url = {https://huggingface.co/wikilangs} |
|
|
institution = {Omneity Labs} |
|
|
} |
|
|
``` |
|
|
|
|
|
### License |
|
|
|
|
|
MIT License - Free for academic and commercial use. |
|
|
|
|
|
### Links |
|
|
|
|
|
- ๐ Website: [wikilangs.org](https://wikilangs.org) |
|
|
- ๐ค Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs) |
|
|
- ๐ Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly) |
|
|
- ๐ค Author: [Omar Kamali](https://huggingface.co/omarkamali) |
|
|
- ๐ค Sponsor: [Featherless AI](https://featherless.ai) |
|
|
--- |
|
|
*Generated by Wikilangs Models Pipeline* |
|
|
|
|
|
*Report Date: 2026-01-03 18:37:11* |
|
|
|